Back

Time to Fill Metrics: How to Fill Roles Faster & Improve Recruitment Efficiency

Has the time to fill metrics genuinely improved over the years?

I think back to my days as a recruiter, you filled jobs by posting adverts. That was 15 years ago. The saying was: “Post and pray” because you never knew what would come back.

The average time to fill a role, as we advised the business, was 30 days.

Even then, time to fill had flexibility because of the ‘war on talent’. It was challenging to fill roles faster. Skilled people. The ‘right’ talent. When we needed to fill positions faster than usual, we would engage a 3rd party recruiting agency to assist. However, that was costly.

  • So, even with the proper sourcing tools in hand – the business just needed to wait. Here were the reasons that recruiters gave for not delivering quickly:
  • We’ve had a really low response rate
    The calibre of applications aren’t quite right
    Our salaries aren’t fitting with what is the average time to fill a position in the market demands.

Sound familiar?

Reasons, and perhaps excuses. And the business just had to wait.

Fast forward 15 years, and from my observations, we are still seeing similar time to fill metrics.

According to Job Vite – average time to fill a position remains anywhere between 25 (retail) or 48 (hospitality) days (when I read this, I nearly fell off my chair!). This is surprising since technology has come such a long way since then.

Why are hiring managers waiting this long for these high-volume skills? And the wait will undoubtedly be increased due to the volumes of applications – thanks to C-19. What is the cost associated with waiting? A straightforward formula I found published by Hudson (for non-revenue generating employees) is: 

(Total Company Annual Revenue) ÷ (Number of Employees) ÷ 365 = Daily Lost Revenue

Here’s a working example. Let’s take a retailer. They generate 2.9 billion in revenues and have 11,000 employees. This means that their daily lost revenue PER vacant position is $722. 


If it takes 25 days to fill this position, then it costs the business $18,057 in lost revenue. The time it is taking to fill roles is costing the business too much.  Speed is of the essence.


Volume recruiting and time-to-fill considerations:

I’ve observed talent teams who recruit in high volume scenarios, grappling with time to fill metrics; spending hours screening thousands of CV’s – with inherent biases creeping in by the 13th CV. Then fatigue sets in. And by the 135th CV, unconscious biases have turned into bold conscious judgments:

  • Their CV is not long enough – “reject”
  • Their CV is too short – “reject”
  • The layout of their CV wasn’t professional enough – “reject”
  • Don’t put education at the back,  have it at the front – “reject”
  • They are not descriptive enough – “reject”
  • They do not have enough retail experience – “reject”. And what even is this arbitrary average time to fill a position based on years of experience? If you have hit the two-year mark within a profession, how does that automatically make you qualified?

In the context of volume recruiting, keeping your process consistent and aiming to fill roles faster is a challenge. The quality of the screening process diminishes as the average time to fill increases.

If it takes 6 seconds to review a CV, that’s 1.6 hours to get through 1000, impacting your time to fill metrics.

Then there is the phone screen. If you only took 30 into this stage and spoke to them for 10 minutes each, then it will take the recruiter five hours. 

And time to fill is not concentrated nor time-bound to one session – it elapses. You aren’t sitting for 1.6 hours at a time nor can you schedule back-to-back phone screens, so the realistic time to fill frame for this is about a week.

From there, it’s coordinating Hiring Manager interviews, conducting their interviews, getting feedback, making decisions, giving offers, taking reference checks, and finalizing compliance steps to fill positions faster. This is where you question, “what is the average time to fill a position?” as it ends up being a long and drawn-out process.

By automating the first pre-screening steps recruiters can seriously slash the time it takes to fill.

Plus they can drive a far better process. How? By getting a trustworthy understanding of the candidate and their personality modelled against the organisations’ success DNA (the “Success DNA” is the profile of what success looks like in your organisation).  

When candidates apply their first step is an automated interview.

It takes 15-20 minutes to complete, and all candidates receive a personality assessment based on what they wrote (which they love).  

Personality can be deduced from the text that candidates write (scientifically proven) and then there is also the feedback from thousands of candidates talking to the accuracy of these personality assessments. 

Here’s a tiny sample of all the feedback >>

 

 

 

What took weeks to get to the interview stage can now be done in minutes following an application.

For Talent Acquisition to build its credibility in the business, it needs to demonstrate its impact on the bottom line and provide tangible solutions to address this need for speed. Tools like Sapia can help with solving for these speed and cost challenges, and the benefits of providing a consistent, bias-free candidate experience are just the icing on the cake. 


Join the movement

To keep up to date on all things “Hiring with Ai” subscribe to our blog!

You can try out Sapia’s FirstInterview right now, or leave us your details here to get a personalised demo.


Blog

Sapia.ai Wrapped 2024

It’s been a year of Big Moves at Sapia.ai. From welcoming groundbreaking brands to achieving incredible milestones in our product innovation and scale, we’re pushing the boundaries of what’s possible in hiring.

And we’re just getting started 🚀

Take a look at the highlights of 2024 

All-in-one hiring platform
This year, with the addition of Live Interview, we’re proud to say our platform now covers screening, assessing and scheduling.
It’s an all-in-one volume hiring platform that enables our customers to deliver a world-leading experience from application through to offer.

Supercharging hiring efficiency
Every 15 seconds, a candidate is interviewed with Sapia.ai.
This year, we’ve saved hiring managers and recruiters hours of precious time that can now be used for higher-value tasks. 

See why our users love us 

Giving candidates the best experience
Our platform allows candidates to be their best selves, so our customers can find the people that truly belong with them. They’re proud to use a technology that’s changing hiring, for good.

Share the candidate love

Leading the way in AI for hiring 

We’ve continued to push the boundaries in leveraging ethical AI for hiring, with new products on the way for Coaching, Internal Mobility & Interview Builders. 

Join us in celebrating an incredible 2024

Read Online
Blog

Situational Judgement Tests vs. AI Chat Interviews: A Modern Perspective on Candidate Assessment

Choosing the right tool for assessing candidates can be challenging. For years, situational judgement tests (SJTs) have been a common choice for evaluating behaviour and decision-making skills. However, they come with limitations that can make the hiring process less effective and less inclusive.

AI-enabled chat-based interviews, such as Sapia.ai, provide organisations with a modern alternative. They focus on understanding candidates as individuals and creating a hiring experience that is both fair and insightful while enabling efficient screening and selection. 

This shift raises important questions: Are SJTs still a tool that should be considered for volume hiring? And what do AI assessments offer in comparison?

1. The Static Nature of SJTs

Traditional SJTs use predefined multiple-choice questions to assess behavioural tendencies and situational knowledge. While useful for screening, these static frameworks lack the flexibility to adapt based on real-world performance data or evolving role requirements. 

Once created, SJTs don’t adapt to new data or evolving organisational needs. They rely on fixed scenarios and responses that may not fully reflect the dynamic realities of modern workplaces, and as a result, their relevance may diminish over time.

AI-enabled chat interviews, on the other hand, are inherently adaptive. Using machine learning, these tools can continuously refine their models based on feedback from real-world outcomes such as hiring or turnover data. This ability to evolve ensures the assessments align with organisations’ needs.

2. Richer Data Through Open-Ended Responses

One of the main critiques of SJTs is their reliance on multiple-choice responses. While structured and straightforward, these options may not capture the full scope of a candidate’s thinking, communication skills, or problem-solving ability. The approach is often limiting, reducing complex human behaviour to a few predefined choices.

AI-enabled chat interviews work more holistically and dynamically. These tools provide a more complete picture of a person by allowing candidates to answer questions in their own words. Natural language processing (NLP) analyses their responses, offering insights into personality traits, communication skills, and behavioural tendencies. This open-ended format lets candidates express themselves authentically, giving employers a deeper understanding of their potential.

3. The Candidate Experience: Stressful or Supportive?

SJTs often include time constraints and rigid formats, which can create pressure for candidates. This is especially true when candidates feel forced to choose options that don’t fully reflect how they would actually behave. The process can feel impersonal, even transactional.

In contrast, chat-based interviews are designed to be conversational and low-pressure for candidates. By removing time limits and adopting a familiar chat interface, these tools help candidates feel more at ease. They also frequently include personalised feedback, turning the assessment into a valuable experience for the candidate, not just the employer.

4. Addressing Bias and Fairness

Traditional SJTs are prone to transparency issues, as candidates can often identify and select the “best practice” answers without revealing their true tendencies. Additionally, static test designs can unintentionally embed bias; due to the nature of the timed test, SJTs have been found to disadvantage some groups. 

AI chat interviews, when developed ethically within a framework like Sapia.ai’s FAIR Hiring Framework, eliminate explicit bias by relying solely on the content of a candidate’s responses. Their machine learning models are continuously validated for fairness, ensuring that hiring decisions are free from subjective judgments or irrelevant demographic factors.

5. An Assessment That Improves Over Time

Workplaces are constantly changing, and hiring tools need to keep up. SJTs’ fixed nature can make them less effective as roles evolve or organizational priorities shift. They provide a snapshot but not a dynamic view of what’s needed.

AI-enabled chat interviews are built to adapt. With feedback loops and continuous learning, they incorporate real-world hiring outcomes—like retention and performance data—into their models. This ensures that assessments stay relevant and effective over time.

Rethinking Candidate Assessment

As hiring demands grow more complex, so does the need for tools that can capture the whole person, not just their response to hypothetical scenarios. While SJTs have played an important role in hiring practices, they are increasingly being replaced by tools like AI-enabled chat interviews.

These modern approaches provide richer data, adapt to changing needs, and create a richer and more engaging experience for candidates. Perhaps most importantly, they emphasise fairness and inclusivity, aligning with the growing demand for unbiased hiring practices.

For organisations evaluating their assessment tools, the question isn’t just which method is “better.” Understanding the specific needs of your roles, teams, and candidates will help you  choose tools that help you make decisions that are both informed and equitable.

Read Online
Blog

Keeping Interviews Real with Next-Gen AI Detection

It’s our firm belief that AI should empower, not overshadow, human potential. While AI tools like ChatGPT are brilliant at assisting us with day-to-day tasks and improving our work efficiency, employers are increasingly concerned that they’re holding candidates back from revealing their true, authentic selves in online interviews.  

As an assessment technology provider, we are responsible for ensuring the authenticity and integrity of our platform. That’s why we’re thrilled to unveil the latest upgrade to our flagship Chat Interview: the AI-Generated Content Detector 2.0. With groundbreaking accuracy and a candidate-friendly design, this innovation reinforces our mission to build ethical AI for hiring that people love.

Artificially Generated Content (AGC) is content created by an AI tool, such as ChatGPT, Claude, or Pi. We initially rolled out the first version of our AGC detector last year and have continued to improve it as our data set has grown and these AI tools have evolved.

What’s New?

Our updated AGC Detector 2.0 achieves an impressive 98% detection rate for AI-assisted responses, with a false positive rate of just 1%. This gives organisations peace of mind that they’re getting the most authentic assessment of every candidate. 

This cutting-edge system builds on Sapia.ai’s proprietary dataset of over 2 billion words, derived from more than 20 million interview question-answer pairs spanning diverse roles, industries, and regions. It’s trained on real-world data collected before and after the release of tools like ChatGPT, ensuring it remains robust and reliable even as AI tools evolve.

The Challenge of AI in Chat-based Interviews

Our data shows that around 8% of candidates use tools like GPT-4 to generate responses for three or more interview questions. While these tools may offer a quick way for candidates to complete their interview, they can inadvertently hide a person’s true personality and potential – qualities our customers are most interested in understanding through our platform. In fact, research from Sapia Labs shows that these tools have their own personality traits, which may be quite different from the candidate applying for the role. 

For Candidates: Enabling Authenticity

When a response is flagged as potentially AI-generated, the system doesn’t disqualify candidates. Instead, a real-time warning pops up, allowing them to revise their answers or submit them as-is. This ensures that candidates are encouraged to present themselves authentically, reflecting their unique communication styles and sharing their genuine experiences. 

For Hiring Teams: Actionable Insights

Responses flagged as AI-generated are highlighted in the candidate’s Talent Insights profile, accessible via Sapia.ai’s Talent Hub or ATS integrations. These insights give hiring teams the transparency to make informed decisions, fostering trust while accelerating hiring timelines. 

Built on Unmatched AI Interview Expertise

“Our detection model’s strength lies in its foundation of real-world interview data collected from diverse roles and regions,” says Dr Buddhi Jayatilleke, Sapia.ai’s Chief Data Scientist. This depth of understanding enables the AGC Detector to maintain its industry-leading accuracy – even when candidates subtly modify AI-generated answers to appear more human.

Why This Matters

The AGC Detector 2.0 embodies Sapia.ai’s commitment to ethical AI that amplifies human potential. As our CEO Barb Hyman explains:

“The hiring landscape has fundamentally changed since ChatGPT, but our commitment remains clear: AI should amplify human potential, not penalise it. This breakthrough fosters authentic hiring conversations. Our real-time warning system helps candidates make better choices and gives enterprises confidence in their selection decisions.”

Testing and Validation of the AGC Detector 2.0 

The new detector has been rigorously tested on over 25,000 interview responses generated by humans and leading AI models like GPT-4, Claude-3.5, and Llama-3. The results speak for themselves, reinforcing the reliability and fairness of this game-changing technology.

Fairness & Transparency in AI-Enabled Hiring

By detecting AI-generated content while allowing candidates to correct their responses, our AGC Detector 2.0 ensures every applicant has the chance to put their best, most authentic foot forward when applying for a role powered by Sapia.ai. For enterprises, it provides confidence in the integrity of their hiring decisions and ensures they’re connecting with real candidates at scale.

Read Online