Volume hiring on a tight timeline can strike fear into even the most experienced recruiter! More often than not, the fallout of failing to hire enough people causes real pain to the business, managers, and you.
So, how can you tackle high volume recruiting and get better with a high volume recruiting strategy each time? Here are our pro tips.
High volume hiring, often termed high-volume recruiting, is the process of recruiting for many positions (50 or more) concurrently or in a very limited period of time. Often the 50+ roles will be of the same job type. It also implies high volumes of applicants coming through for recruiter’s review, making high volume recruiting tools crucial.
Volume hiring in recruitment, also known as volume recruitment or bulk recruitment process, is common in retail and hospitality, where many people have to be hired quickly for busy periods, events, and new store or restaurant openings. Graduate recruitment in large organizations often falls under high volume recruitment, as does hiring for nurses, other health workers, and call centre staff. A proper high volume hiring strategy is pivotal in these sectors.
During C-19, we saw the emergence of surge hiring – again, another form of high-volume hiring where thousands of people are needed in-store or in the contact-centre within days.
High volume recruiting challenges to overcome
Apart from the sheer logistical challenges, there are five major high volume recruiting challenges organisations face.
In a perfect world, recruitment requirements can be anticipated and planned for using the right high volume recruiting tools, but that’s not always the case. That’s why a scalable, repeatable high volume recruiting strategy is essential.
The cost can easily go over budget too. This is where scalable processes, talent pooling, and high volume recruiting tools are your allies.
Getting the candidate experience right at scale isn’t easy, but it’s essential. Otherwise, your marketing department will be asking some serious questions, and you’ll find it much harder to find good applicants in the future.
Sometimes a candidate’s decision whether or not to take a role is related to their hourly rate. But more and more often, candidates want to work for a company that aligns with their values and offers learning and development opportunities. Make sure you articulate your EVP well using an effective high volume recruiting strategy. Your competitors will be using their EVP to try and snaffle your candidates.
Now you know the major high volume recruiting challenges, it’s time to put together the right volume hiring strategies to help you overcome the challenges, and attract and hire the best people.
Bulk hiring techniques have come a long way over the years, from Applicant Tracking Systems scanning and scoring CVs, to the explosion of recruitment Ai now available. Let’s take a look at the volume hiring best practices you can use to make each stage of the bulk recruitment process scalable, fast and fair.
There are six major milestones in the bulk-hiring process. Discover, engage, assess, interview, decide and validate. Each stage is equally important, and most stages of the bulk-hiring process can be streamlined so that they’re highly scalable. (The Interview and Decide stages are the most time and resource-intensive, but they’re well worth the investment.)
Ensuring the right potential applicants find you is the first step in getting volume hiring in recruitment right.
Remember:
Lean into your Applicant Tracking System (ATS). Spend your time writing a great ad highlighting your EVP and let the ATS do the heavy lifting of shipping to multiple job boards.
Think about how applicants from underrepresented backgrounds can find your ad, and make it clear everyone’s welcome.
For retail and hospitality, don’t forget walk-in applicants. Check if you can use a ‘kiosk mode’ or similar with your ATS so applicants can fill in their details on an iPad rather than having paper applications pile up on manager’s desks (and get lost!).
Check previous applicant pools and ask for employee referrals.
Measure:
Performance of each advertising channel (ideally by how many successful candidates the channel attracts)
The diversity of your applicant pool
Pro tip:
People want to know what it’s like to work at your organisation. Ideally, have a video on the ad with people in a similar role explaining what it’s like. If you’re in a hurry – include quotes from an employee or two.
Once you’ve got an applicant’s attention, you need to make sure they stay interested.
Remember:
Applicants are applying for multiple positions, and the organisation who delivers the best candidate experience wins. Make communications look as 1:1 as possible.
Measure:
Application completion rate. This will tell you if the process is working, or if there’s something putting potential applicants off. This could be the length of the form, a confusing requirement, or even a technical glitch.
Pro tip:
Put some character into your application received responders. Write as you talk rather than like a bureaucrat. And don’t say: we can’t get back to everyone if you don’t hear from us you’ve been unsuccessful (or similar). If you expect candidates to put energy into applying, put energy into replying.
Now you’ve got a pool of candidates; you need to assess them.
Remember:
Sadly, CVs have proven themselves to not be a good way to assess future performance, and they only reinforce biases. This is an opportunity to disrupt the usual bulk-hiring techniques with something that delights candidates and hiring managers.
Measure:
Candidate satisfaction. This will tell you how candidates find the experience. It’s is a good indicator that offer acceptance should be healthy, and that you won’t lose customers who are candidates. Some recruiting platforms offer candidate satisfaction surveys, or you can choose to use your employee engagement platform.
Pro tip:
We created Smart Interviewer, our conversational chat technology so that every candidate could have an interview. Not only do you get detailed responses to questions, but the answers also reveal more about the candidate’s personality than any CV ever could. Using natural language processing, we’re able to build an accurate personality profile. Every single candidate receives automated, personalised feedback, and they love it. One supermarket client, Iceland, interviewed 50,000 candidates and received a 100% candidate satisfaction score.
Once you have the results of Ai chat assessments, you’ll want to interview the candidates whose scores and profiles appear to match your requirements.
Remember:
Have a diverse selection panel (especially if you have a diverse talent pool).
Be consistent in how you interview and assess each candidate. Especially in group interviews, don’t be tempted to hire extroverts. You need a mix of personalities to build a successful team.
Measure:
Attendance. If there’s a significant drop-off, look into why.
Pro tip:
We created Talent Insights so you can easily see each candidate’s score and psychometric profile informed by their Ai chat responses before you speak with them. We designed our Live Interview platform to make collecting and recording consistent data easy, so you can ensure everyone gets a fair go (and you don’t have to sort through impossible to interpret notes after your meetings).
Now you’ve got a list of fantastic candidates, you’ve met them, and you’re ready to invite some of them to join you.
Remember:
Now is not the time to fall back on ‘gut feeling’ or ‘culture fit’. Use the data you’ve collected to make informed, unbiased bulk-hiring decisions.
Know in advance if you’ll accept a candidate with minor flags in background checks or character references in place of professional ones. Stick to the decisions when you’re in those situations.
Measure:
Offer acceptance rate – to uncover any underlying issues with how attractive your EVP or employer brand is.
Applicants to hire rate – to understand if you could advertise less or in fewer channels in future.
Candidates to hire rate – to understand if you can optimise the size of your interviewed candidate pool.
Pro tip:
Start onboarding the moment an employee signs. Invite them to your learning platform, or simply send them a video from their manager or the CEO welcoming them on board and saying how excited you are to have them.
To ensure your process is working, it’s essential to measure your success.
Remember:
Book in an hour or two a week or so after the end of each bulk recruitment process to analyse the data.
Take a look at the list of challenges above, and any goals you had at the start of the process and see how you tracked against them.
Measure:
Candidate satisfaction
This will come from surveys sent to all candidates. It’s built into Sapia and most other recruitment software.
Time to hire
The elapsed between when a candidate is first contacted (in these volume hiring strategies, the assess stage) and when they’re hired.
Cost per hire
All of the hiring costs, divided by how many candidates were hired.
Offer acceptance rate
The number of offers accepted, divided by the number of offers made, multiplied by 100. If this is low, consider any issues with your EVP or the time it takes to make an offer after an interview.
Diversity
At Sapia we don’t collect attributes which could attract bias. We build an understanding of diversity by using Namsor (www.namsor.com) in order to validate the effectiveness of our platform. Namsor takes names of applicants and derives gender and ethnicity, and we use that data to understand how effective we have been at achieving diversity at each step of the path.
Pro tip:
Measure, learn and optimise your high volume recruiting strategies every single time you complete a project, and you’ll find you improve each time. This will save time and money, and increase diversity.
Technology is your friend when it comes to building scalable volume hiring strategies and embracing high volume recruiting tools. Here are four key pieces of technology to consider for high volume recruiting. There are plenty of tools out there, so this is by no means an exhaustive list.
Applicant tracking system
Your ATS will help you post ads, screen resumes, bulk communicate with applicants, and collect data. When working within a high volume recruiting strategy, you should also use it to build talent pools and pipelines for future roles.
Interview automation
An Ai assessment like Sapia means you can give every single applicant a conversational chat interview. The quickest payback you will get on volume hiring is an investment in interview automation. Interview automation can truly enhance your high volume recruitment process and help you make it more efficient (and pleasant) for everyone involved. This will help you get your time back quickly and release the budget for automation in other areas of recruiting. Embracing such high volume recruiting tools ensures efficiency.
Sapia meets the needs that challenge many of my clients today – how do they manage high volume recruitment processes in a streamlined and cost-effective way, while still delivering a great candidate experience and quality hiring decisions. With Sapia, you leverage the latest in data analytics and tech to maximize efficiency & effectiveness; and the candidate experience is fresh and engaging, with great feedback! The product is great and constantly evolving!
It’s worth considering a candidate engagement survey for your high volume recruiting strategy. In this survey, you can ask questions to reveal how well your EVP is resonating. Then you can compare candidate engagement scores with new employee engagement scores and exit interviews to understand if you’re delivering on your EVP as part of your bulk recruitment process.
Onboarding
Integrating your onboarding software with your ATS (or choosing one with onboarding included) allows you to start onboarding and engaging candidates as soon as they sign their (automated) contract. This is a dream for high volume hiring, getting workplace health and safety, and even procedural training done before a new employee walks in the door.
Good news: It’s only going to get easier
It’s easy to feel overwhelmed when you’re doing high volume hiring in an environment where there’s elevated unemployment or other challenging factors. The good news is that as much as the world may be getting more complicated, and as much as candidate expectations are soaring, the technology to support recruiters in high volume recruiting has never been faster, fairer, or more scalable.
Establish your own volume hiring best practices and keep optimizing your volume hiring strategies. It takes some time to set up, but the rewards are well worth the effort.
To keep up to date on all things “Hiring with Ai” subscribe to our blog!
You can try out Sapia’s Chat Interview right now, or leave us your details to get a personalised demo
Predictive Talent Analytics turns the imaginary into reality, presenting a variety of businesses, including contact centres, with the opportunity to improve hiring outcomes and raise the performance bar. With only a minor tweak to existing business processes, predictive talent analytics addresses challenge faced by many contact centres.
Recruitment typically involves face-to-face or telephone interviews and psychometric or situational awareness tests. However, there’s an opportunity to make better hires and to achieve better outcomes through the use of Predictive Talent Analytics.
Many organisations are already using analytics to help with their talent processes. Crucially, these are descriptive analytical tools. They’re reporting the past and present. They aren’t looking forward to tomorrow and that’s key. If the business is moving forward your talent tools should also be pointing in the same direction.
Consider a call-waiting display board showing missed and waiting calls. This is reporting.
Alternatively, consider a board that does the same but also accurately predicts significant increases in call volumes, providing you with enough time to increase staffing levels appropriately. That’s predictive.
Descriptive analytical tools showing the path to achievement taken by good performers within the business can add value. But does that mean that every candidate within a bracketed level of academic achievement, from a particular socio-economic background, from a certain area of town or from a particular job board is right for your business? It’s unlikely! Psychometric tests add value but does that mean that everyone within a pre-set number of personality types will be a good fit for your business? That’s also unlikely.
The simple truth is that, even with psychometric testing and rigorous interviews, people are still cycling out of contact centres and the same business challenges remain.
With only a minor tweak to talent processes, predictive talent analytics presents an opportunity to harness existing data and drive the business forward by making hiring recommendations based on somebody’s future capability.
But wait, it gets better!
Pick the right predictive talent analytics tool and this can be done in an interesting, innovative and intriguing way taking approximately five minutes.
Once the tool’s algorithm knows what good looks like, crucially within your business (because every company is different!), your talent acquisition team can approach the wider talent market armed with a new tool that will drive up efficiency and performance.
Picking the right hires, first time.
Consider this. Candidate A has solid, recent, relevant experience and good academic grades, ticking all the right hiring boxes but post-hire subsequently cycles out of the business in a few months.
Candidate B is a recent school-leaver with poor grades, no work history but receives a high-performance prediction and, once trained, becomes an excellent employee for many years to come.
On paper candidate A is the better prospect but with the fullness of time, candidate B, identified using predictive talent analytics, is the better hire.
Instead of using generic personality bandings to make hiring decisions, use a different solution.
Use predictive talent analytics to rapidly identify people who will generate more sales or any other measured output. Find those who will be absent less or those who will help the business achieve a higher NPS. Bring applicants into the recruitment pipeline knowing the data is showing they will be a capable, or excellent, performer for your business.
Now that’s an opportunity worth grasping!
Steven John worked within contact centres whilst studying at university, was a recruiter for 13 years and is now Business Development Manager at Sapia, a leading workforce science business providing a data-driven prediction with every hire. This article was originally written for the UK Contact Centre Forum
You can try out Sapia’s FirstInterview right now, or leave us your details to book a demo
The value is greatest when companies harness the differences between employees from multiple demographic backgrounds to understand and appeal to a broad customer base. But true diversity relies on social mobility and therein lies the problem: the rate of social mobility in the UK is the worst in the developed world.
The root cause of the UK’s lack of social mobility can be found in the very place that it can bring the most value – the workplace. Employers’ recruiting processes often suffer from unconscious human bias that results in involuntary discrimination. As a result, the correlation between what an employee in the UK earns today and what his or her father earned is more apparent than in any other major economy.
This article explores the barriers to occupational mobility in the UK and the growing use of predictive analytics or algorithmic hiring to neutralise unintentional prejudice against age, academic background, class, ethnicity, colour, gender, disability, sexual orientation and religion.
The UK government has highlighted the fact that ‘patterns of inequality are imprinted from one generation to the next’ and has pledged to make their vision of a socially mobile country a reality. At the recent Conservative party conference in Manchester, David Cameron condemned the country’s lack of social mobility as unacceptable for ‘the party of aspiration’. Some of the eye-opening statistics quoted by Cameron include:
The OECD claims that income inequality cost the UK 9% in GDP growth between 1990 and 2010. Fewer educational opportunities for disadvantaged individuals had the effect of lowering social mobility and hampering skills development. Those from poor socio economic backgrounds may be just as talented as their privately educated contemporaries and perhaps the missing link in bridging the skills gap in the UK. Various industry sectors have hit out at the government’s immigration policy, claiming this widens the country’s skills gap still further.
Besides immigration, there are other barriers to social mobility within the UK that need to be lifted. Research by Deloitte has shown that 35% of jobs over the next 20 years will be automated. These are mainly unskilled roles that will impact people from low incomes. Rather than relying too heavily on skilled immigrants, the country needs to invest in training and development to upskill young people and provide home-grown talent to meet the future needs of the UK economy. Countries that promote equal opportunity for everyone from an early age are those that will grow and prosper.
The UK government’s proposal to tackle the issue of social mobility, both in education and in the workplace, has to be greatly welcomed. Cameron cited evidence that people with white-sounding names are more likely to get job interviews than equally qualified people with ethnic names, a trend that he described as ‘disgraceful’. He also referred to employers discriminating against gay people and the need to close the pay gap between men and women. Some major employers – including Deloitte, HSBC, the BBC and the NHS – are combatting this issue by introducing blind-name CVs, where the candidate’s name is blocked out on the CV and the initial screening process. UCAS has also adopted this approach in light of the fact that 36% of ethnic minority applicants from 2010-2012 received places at Russell Group universities, compared with 55% of white applicants.
Although blind-name CVs avoid initial discriminatory biases in an attempt to improve diversity in the workforce, recruiters may still be subject to similar or other biases later in the hiring process. Some law firms, for example, still insist on recruiting Oxbridge graduates, when in fact their skillset may not correlate positively with the job or company culture. While conscious human bias can only be changed through education, lobbying and a shift in attitude, a great deal can be done to eliminate unconscious human bias through predictive analytics or algorithmic hiring.
Bias in the hiring process not only thwarts social mobility but is detrimental to productivity, profitability and brand value. The best way to remove such bias is to shift reliance from humans to data science and algorithms. Human subjectivity relies on gut feel and is liable to passive bias or, at worst, active discrimination. If an employer genuinely wants to ignore a candidate’s schooling, racial background or social class, these variables can be hidden. Algorithms can have a non-discriminatory output as long as the data used to build them is also of a non-discriminatory nature.
Predictive analytics is an objective way of analysing relevant variables – such as biodata, pre-hire attitudes and personality traits – to determine which candidates are likely to perform best in their roles. By blocking out social background data, informed hiring decisions can be made that have a positive impact on company performance. The primary aim of predictive analytics is to improve organisational profitability, while a positive impact on social mobility is a healthy by-product.
A recent study in the USA revealed that the dropout rate at university will lead to a shortage of qualified graduates in the market (3 million deficit in the short term, rising to 16 million by 2025). Predictive analytics was trialled to anticipate early signs of struggle among students and to reach out with additional coaching and support. As a result, within the state of Georgia student retention rates increased by 5% and the time needed to earn a degree decreased by almost half a semester. The programme ascertained that students from high-income families were ten times more likely to complete their course than those from low-income households, enabling preventative measures to be put in place to help students from socially deprived backgrounds to succeed.
Bias and stereotyping are in-built physiological behaviours that help humans identify kinship and avoid dangerous circumstances. Such behaviours, however, cloud our judgement when it comes to recruitment decisions. More companies are shifting from a subjective recruitment process to a more objective process, which leads to decision making based on factual evidence. According to the CIPD, on average one-third of companies use assessment centres as a method to select an employee from their candidate pool. This no doubt helps to reduce subjectivity but does not eradicate it completely, as peer group bias can still be brought to bear on the outcome.
Two of the main biases which may be detrimental to hiring decisions are ‘Affinity bias’ and ‘Status Quo bias’. ‘Affinity bias’ leads to people recruiting those who are similar to themselves, while ‘Status Quo bias’ leads to recruitment decisions based on the likeness candidates have with previous hires. Recruiting on this basis may fail to match the selected person’s attributes with the requirements of the job.
Undoubtedly it is important to get along with those who will be joining the company. The key is to use data-driven modelling to narrow down the search in an objective manner before selecting based on compatibility. Predictive analytics can project how a person will fare by comparing candidate data with that of existing employees deemed to be h3 performers and relying on metrics that are devoid of the type of questioning that could lead to the discriminatory biases that inhibit social mobility.
“When it comes to making final decisions, the more data-driven recruiting managers can be, the better.”
‘Heuristic bias’ is another example of normal human behaviour that influences hiring decisions. Also known as ‘Confirmation bias’, it allows us to quickly make sense of a complex environment by drawing upon relevant known information to substantiate our reasoning. Since it is anchored on personal experience, it is by default arbitrary and can give rise to an incorrect assessment.
Other forms of bias include ‘Contrast bias’, when a candidate is compared with the previous one instead of comparing his or her individual skills and attributes to those required for the job. ‘Halo bias’ is when a recruiter sees one great thing about a candidate and allows that to sway opinion on everything else about that candidate. The opposite is ‘Horns bias’, where the recruiter sees one bad thing about a candidate and lets it cloud opinion on all their other attributes. Again, predictive analytics precludes all these forms of bias by sticking to the facts.
https://sapia.ai/blog/workplace-unconscious-bias/
Age is firmly on the agenda in the world of recruitment, yet it has been reported that over 50% of recruiters who record age in the hiring process do not employ people older than themselves. Disabled candidates are often discriminated against because recruiters cannot see past the disability. Even these fundamental stereotypes and biases can be avoided through data-driven analytics that cut to the core in matching attitudes, skills and personality to job requirements.
Once objective decisions have been made, companies need to have the confidence not to overturn them and revert to reliance on one-to-one interviews, which have low predictive power. The CIPD cautions against this and advocates a pure, data-driven approach: ‘When it comes to making final decisions, the more data-driven recruiting managers can be, the better’.
The government’s strategy for social mobility states that ‘tackling the opportunity deficit – creating an open, socially mobile society – is our guiding purpose’ but that ‘by definition, this is a long-term undertaking. There is no magic wand we can wave to see immediate effects.’ Being aware of bias is just the first step in minimising its negative effect in the hiring process. Algorithmic hiring is not the only solution but, if supported by the government and key trade bodies, it can go a long way towards remedying the inherent weakness in current recruitment practice. Once the UK’s leading businesses begin to witness the benefits of a genuinely diverse workforce in terms of increased productivity and profitability, predictive hiring will become a self-fulfilling prophecy.
During this seasonal holiday a great many of us will start to create plans for the forthcoming New Year. We’ll think about events, occurrences and happenings of the year gone by and many will commit to doing things better next year.
Even though studies have shown that only 8% of people keep their New Year’s resolutions , we still make (and subsequently break) them. But the intention was there, so good work!
Have you ever stopped to think about the processes your brain undertakes to enable you to set your goals for the New Year? No? Well, luckily I’ve done that bit for you. To make that resolution you combined your current and historical personal data and produced a future outcome, factoring in the probability of success, based on your analysis. A form of predictive analytics, if you like!
Predictive Analytics.
Thinking about those things you did (and didn’t do) this year and predicting/projecting for next year.
So now you know what it involves and we are (loosely) agreed that you’re on board with predictive analytics, when better than to tell you now that 2016 is going to be the year when we really start to see the benefits of predictive analytics within our jobs and people functions at work.
I think it’s now universally accepted that when technology is used in the right way it can enhance and improve our lives across every sector and industry. Most fields have seen significant developments over the last 20-30 years as technology is increasingly used to further our understanding of the way things work, enabling us to make better decisions in areas such as medicine, sport, communication and, arguably, even dating (predictive analytics is used in all of those sectors by the way!) so why not use it to help us find the right people for the right organisations?
Did you know you no longer need a top-class honours degree to work at Google?
Every employee is put through their analytics process allowing the business to match the right person with the right team, giving each individual the best environment to allow their talent to flourish.
Companies such as E&Y and Deloitte are using different methods to tackle the same problem – removing conscious and subconscious bias attached to the name and/or perceived quality of the university where applicants studied.
Airlines, retail, BPOs, recruitment firms a growing number of businesses within these sectors are using or on-boarding predictive analytics to achieve upturns in profits, productivity and achieving a more diverse and happier workforce.
Predictive analytics helps us make people and talent decisions to positively influence tomorrow’s business performance without bias, so I guess the question is this – if it’s already a proven science to achieve results, why isn’t everyone doing it? How long until everyone starts to use, and see the benefits, of predictive analytics?
Data can be big and it can be daunting, but it can also be invaluable if you ask and frame the right questions and combine the answers with human knowledge and experience. You will be surprised by the insights, knowledge and benefits that your business can obtain from even the smallest amounts of data. Data you probably already collect, even if it’s unknowingly or unwittingly!
So as you start rummaging through your brain trying to remember where you filed your finest seasonal outfit(s) (that might just be me!), start prepping for the new year budgets, or start writing your list of resolutions let me help you frame a few questions:
Statistically, your personal New Year’s resolution is unlikely to be on course in 12-months time so instead, why not make a resolution to bring predictive analytics into your talent processes in the upcoming year?
You’ll see the benefits for years to come, and that’s a promise we can both keep.
Happy holidays!