Back

Want to make recruitment more human? Make it ‘trustless’

Last week, our smart interviewer technology was featured in a glowing piece by the Australian Financial Review. The story was picked up by LinkedIn News Australia, who conducted a poll asking users if they were “comfortable being interviewed by a bot”. 

The poll garnered more than 6,500 responses. Perhaps unsurprisingly, 50% of respondents selected the response “No – it’s a job for humans.” Just under a third of LinkedIn users said that they believe chatbot interviewing is “the future”, while 21% said that it’s appropriate only for certain roles.

When you have over 6,500 responses, you can do some meaningful analysis. In this case, “It’s just for humans” was the prevailing opinion. But, in the comments section attached to the poll, we discovered more about how people feel toward Ai, both as a technological construct and as a tool for recruitment. We bucketed the comments into five recurring themes:

  1. We can’t trust the people that make Ai
  2. Ai can never remove bias
  3. Ai aims to replace humans
  4. Ai is dangerous
  5. People don’t like chatbots, because they aren’t human

Ai hasn’t made a good name for itself lately – take Amazon’s recent facial recognition debacle as a good example – so it’s easy to see why people are resistant to the prospect of Ai moving into a space historically handled by humans. Take a bird’s eye view, and the notion certainly looks preposterous: How could a machine, asking just five questions, ever hope to recreate the capabilities of a seasoned recruiter or talent acquisition specialist?

That is the problem, though: The more ‘human’ aspects of the recruitment process are ruining the game. Ghosting is rampant, both for candidates and recruiters. Ineradicable biases are creating unfairnesses that permeate organisations from top to bottom. The Great Resignation is putting immense pressure on hirers to move quickly, excluding thousands of applicants based on arbitrary criteria that shift from month to month. Consider, too, these sobering statistics:

  • According to a recent global survey by CoderPad, 65% of tech recruiters believe their hiring process is biased
  • Mentions of ‘ghosting’ in Glassdoor interview reviews is up 450% since the start of the pandemic (Business Insider, 2021)
  • A toxic corporate culture is 10.4 times more likely to predict employee churn than compensation (the point here being that hiring poorly decimates an organisation in no time flat)
  • 78% of job seekers have admitted to lying on their CVs

Ai is held to an impossible standard

For Ai to qualify as a useable, reliable tool, we expect it to be perfect. We compare it, unfairly, against some ultimate human ideal: The chirpy, well-rested recruiter on their best day. The kind of recruiter who has never ghosted anyone, who has no biases whatsoever, and who finds the right person for the right job, no matter what. Here’s the issue with this comparison: That kind of human doesn’t exist.

For Ai to be a valid and useful tool, and an everyday part of the human recruiter’s toolset, it doesn’t need to be perfect, flawless; it only needs to be better than the alternative. Can’t be done? For one example, Smart Interviewer, eliminates the problem of ghosting completely: Each of your candidates gets an interview, and every single person receives feedback. Even better? 98% of the candidates who use our platform find that feedback useful. 

(That is to say nothing of the way it removes bias, as if that weren’t enough on its own.)

We need to make recruitment ‘trustless’

Ai has a way to go before it will earn the trust of the majority. Again, this is totally understandable. We believe that there is a better, and quicker, way to get there.

To borrow a concept commonly associated with cryptocurrency and blockchain technology, we want to create a trustless environment for our Ai and its activities. Not an environment without trust, but one in which trust is a foregone conclusion. In a trustless environment, dishonesty, either by admission or omission, is impossible. Just as you cannot forge blockchain entries, you cannot hide the workings and algorithms that make our Ai what it is.

That is the essence of our FAIR Framework. For hiring managers and organisations, this document provides an assurance as well as a template to query fairness related metrics of Ai recruitment tools. For candidates, FAIR ensures that they are using a system built with fairness as a key performance metric. For us, transparency on fairness is standard operating procedure.

Finally, think about this: When we say we want a ‘human’ recruitment process, what are we really saying? That we want something fallible, prone to biases, subject to the decisions of people who have bad days? What if a trustless Ai companion could help remove all that, without replacing the person? Is that not more human?


Blog

Sapia.ai Wrapped 2024

It’s been a year of Big Moves at Sapia.ai. From welcoming groundbreaking brands to achieving incredible milestones in our product innovation and scale, we’re pushing the boundaries of what’s possible in hiring.

And we’re just getting started 🚀

Take a look at the highlights of 2024 

All-in-one hiring platform
This year, with the addition of Live Interview, we’re proud to say our platform now covers screening, assessing and scheduling.
It’s an all-in-one volume hiring platform that enables our customers to deliver a world-leading experience from application through to offer.

Supercharging hiring efficiency
Every 15 seconds, a candidate is interviewed with Sapia.ai.
This year, we’ve saved hiring managers and recruiters hours of precious time that can now be used for higher-value tasks. 

See why our users love us 

Giving candidates the best experience
Our platform allows candidates to be their best selves, so our customers can find the people that truly belong with them. They’re proud to use a technology that’s changing hiring, for good.

Share the candidate love

Leading the way in AI for hiring 

We’ve continued to push the boundaries in leveraging ethical AI for hiring, with new products on the way for Coaching, Internal Mobility & Interview Builders. 

Join us in celebrating an incredible 2024

Read Online
Blog

Situational Judgement Tests vs. AI Chat Interviews: A Modern Perspective on Candidate Assessment

Choosing the right tool for assessing candidates can be challenging. For years, situational judgement tests (SJTs) have been a common choice for evaluating behaviour and decision-making skills. However, they come with limitations that can make the hiring process less effective and less inclusive.

AI-enabled chat-based interviews, such as Sapia.ai, provide organisations with a modern alternative. They focus on understanding candidates as individuals and creating a hiring experience that is both fair and insightful while enabling efficient screening and selection. 

This shift raises important questions: Are SJTs still a tool that should be considered for volume hiring? And what do AI assessments offer in comparison?

1. The Static Nature of SJTs

Traditional SJTs use predefined multiple-choice questions to assess behavioural tendencies and situational knowledge. While useful for screening, these static frameworks lack the flexibility to adapt based on real-world performance data or evolving role requirements. 

Once created, SJTs don’t adapt to new data or evolving organisational needs. They rely on fixed scenarios and responses that may not fully reflect the dynamic realities of modern workplaces, and as a result, their relevance may diminish over time.

AI-enabled chat interviews, on the other hand, are inherently adaptive. Using machine learning, these tools can continuously refine their models based on feedback from real-world outcomes such as hiring or turnover data. This ability to evolve ensures the assessments align with organisations’ needs.

2. Richer Data Through Open-Ended Responses

One of the main critiques of SJTs is their reliance on multiple-choice responses. While structured and straightforward, these options may not capture the full scope of a candidate’s thinking, communication skills, or problem-solving ability. The approach is often limiting, reducing complex human behaviour to a few predefined choices.

AI-enabled chat interviews work more holistically and dynamically. These tools provide a more complete picture of a person by allowing candidates to answer questions in their own words. Natural language processing (NLP) analyses their responses, offering insights into personality traits, communication skills, and behavioural tendencies. This open-ended format lets candidates express themselves authentically, giving employers a deeper understanding of their potential.

3. The Candidate Experience: Stressful or Supportive?

SJTs often include time constraints and rigid formats, which can create pressure for candidates. This is especially true when candidates feel forced to choose options that don’t fully reflect how they would actually behave. The process can feel impersonal, even transactional.

In contrast, chat-based interviews are designed to be conversational and low-pressure for candidates. By removing time limits and adopting a familiar chat interface, these tools help candidates feel more at ease. They also frequently include personalised feedback, turning the assessment into a valuable experience for the candidate, not just the employer.

4. Addressing Bias and Fairness

Traditional SJTs are prone to transparency issues, as candidates can often identify and select the “best practice” answers without revealing their true tendencies. Additionally, static test designs can unintentionally embed bias; due to the nature of the timed test, SJTs have been found to disadvantage some groups. 

AI chat interviews, when developed ethically within a framework like Sapia.ai’s FAIR Hiring Framework, eliminate explicit bias by relying solely on the content of a candidate’s responses. Their machine learning models are continuously validated for fairness, ensuring that hiring decisions are free from subjective judgments or irrelevant demographic factors.

5. An Assessment That Improves Over Time

Workplaces are constantly changing, and hiring tools need to keep up. SJTs’ fixed nature can make them less effective as roles evolve or organizational priorities shift. They provide a snapshot but not a dynamic view of what’s needed.

AI-enabled chat interviews are built to adapt. With feedback loops and continuous learning, they incorporate real-world hiring outcomes—like retention and performance data—into their models. This ensures that assessments stay relevant and effective over time.

Rethinking Candidate Assessment

As hiring demands grow more complex, so does the need for tools that can capture the whole person, not just their response to hypothetical scenarios. While SJTs have played an important role in hiring practices, they are increasingly being replaced by tools like AI-enabled chat interviews.

These modern approaches provide richer data, adapt to changing needs, and create a richer and more engaging experience for candidates. Perhaps most importantly, they emphasise fairness and inclusivity, aligning with the growing demand for unbiased hiring practices.

For organisations evaluating their assessment tools, the question isn’t just which method is “better.” Understanding the specific needs of your roles, teams, and candidates will help you  choose tools that help you make decisions that are both informed and equitable.

Read Online
Blog

Keeping Interviews Real with Next-Gen AI Detection

It’s our firm belief that AI should empower, not overshadow, human potential. While AI tools like ChatGPT are brilliant at assisting us with day-to-day tasks and improving our work efficiency, employers are increasingly concerned that they’re holding candidates back from revealing their true, authentic selves in online interviews.  

As an assessment technology provider, we are responsible for ensuring the authenticity and integrity of our platform. That’s why we’re thrilled to unveil the latest upgrade to our flagship Chat Interview: the AI-Generated Content Detector 2.0. With groundbreaking accuracy and a candidate-friendly design, this innovation reinforces our mission to build ethical AI for hiring that people love.

Artificially Generated Content (AGC) is content created by an AI tool, such as ChatGPT, Claude, or Pi. We initially rolled out the first version of our AGC detector last year and have continued to improve it as our data set has grown and these AI tools have evolved.

What’s New?

Our updated AGC Detector 2.0 achieves an impressive 98% detection rate for AI-assisted responses, with a false positive rate of just 1%. This gives organisations peace of mind that they’re getting the most authentic assessment of every candidate. 

This cutting-edge system builds on Sapia.ai’s proprietary dataset of over 2 billion words, derived from more than 20 million interview question-answer pairs spanning diverse roles, industries, and regions. It’s trained on real-world data collected before and after the release of tools like ChatGPT, ensuring it remains robust and reliable even as AI tools evolve.

The Challenge of AI in Chat-based Interviews

Our data shows that around 8% of candidates use tools like GPT-4 to generate responses for three or more interview questions. While these tools may offer a quick way for candidates to complete their interview, they can inadvertently hide a person’s true personality and potential – qualities our customers are most interested in understanding through our platform. In fact, research from Sapia Labs shows that these tools have their own personality traits, which may be quite different from the candidate applying for the role. 

For Candidates: Enabling Authenticity

When a response is flagged as potentially AI-generated, the system doesn’t disqualify candidates. Instead, a real-time warning pops up, allowing them to revise their answers or submit them as-is. This ensures that candidates are encouraged to present themselves authentically, reflecting their unique communication styles and sharing their genuine experiences. 

For Hiring Teams: Actionable Insights

Responses flagged as AI-generated are highlighted in the candidate’s Talent Insights profile, accessible via Sapia.ai’s Talent Hub or ATS integrations. These insights give hiring teams the transparency to make informed decisions, fostering trust while accelerating hiring timelines. 

Built on Unmatched AI Interview Expertise

“Our detection model’s strength lies in its foundation of real-world interview data collected from diverse roles and regions,” says Dr Buddhi Jayatilleke, Sapia.ai’s Chief Data Scientist. This depth of understanding enables the AGC Detector to maintain its industry-leading accuracy – even when candidates subtly modify AI-generated answers to appear more human.

Why This Matters

The AGC Detector 2.0 embodies Sapia.ai’s commitment to ethical AI that amplifies human potential. As our CEO Barb Hyman explains:

“The hiring landscape has fundamentally changed since ChatGPT, but our commitment remains clear: AI should amplify human potential, not penalise it. This breakthrough fosters authentic hiring conversations. Our real-time warning system helps candidates make better choices and gives enterprises confidence in their selection decisions.”

Testing and Validation of the AGC Detector 2.0 

The new detector has been rigorously tested on over 25,000 interview responses generated by humans and leading AI models like GPT-4, Claude-3.5, and Llama-3. The results speak for themselves, reinforcing the reliability and fairness of this game-changing technology.

Fairness & Transparency in AI-Enabled Hiring

By detecting AI-generated content while allowing candidates to correct their responses, our AGC Detector 2.0 ensures every applicant has the chance to put their best, most authentic foot forward when applying for a role powered by Sapia.ai. For enterprises, it provides confidence in the integrity of their hiring decisions and ensures they’re connecting with real candidates at scale.

Read Online