More money is flowing into Environmental, Social and Governance (ESG) than ever. In 2021, investors poured $649 billion into ESG-focused funds worldwide, up 90% from the $542 billion invested in 2020. In the UK, over 21% of investors plan to back funds and companies with comprehensive ESG strategies by 2025. And in Australia, more than 55% of super funds are using responsible investment approaches to inform strategic asset allocation.
All this investment has prompted a sharper focus on social issues across major companies – the S in Environmental, Social, and Governance. The great news is that investment in the big S, in turn, means more money and attention toward progress in Diversity, Equity and Inclusion (DEI).
Executives who underscore the significance of diversity in hiring understand that an impactful DEI strategy must originate from the highest ranks – consider the Australian superannuation fund HESTA and its 40:40 vision as a prime example. However, for the strategy to be truly effective, diversity hiring ideas need to permeate all levels of the organization. It’s also critical to meticulously track and measure the extent to which we are achieving our diversity hiring goals to ensure real progress is made.
Both boards and shareholders want measurable change in DEI, and fast. According to a Harvard Business Review study of S&P 500 earnings calls, the frequency with which CEOs talk about issues of equity, fairness, and inclusion has increased by 658% since 2018. The momentum is clear, and expectations are that this will only increase further in the coming years.
According to another HBR article, 40% of US companies discussed DEI in their Q2 2020 earnings calls, which is a huge step up from the 4% of companies that did the year before. And with 1,600 CEOs pledging to take action on DEI, setting goals and tracking progress remain top priorities.
DEI and ESG are big challenges, and we might take myriad possible approaches in trying to solve them. Some companies may start at the executive level (HESTA, as an example), while others may invest in partnerships and outreach programs. The spectrum of options can easily become overwhelming.
“Interestingly, I’m just looking at our workforce profile and have been discussing the changes in diversity since we updated our recruitment approach last March. Not only have we hired three times more ethnic minorities and 1.5 times more women, but we now have twice as many LGBTQI+ colleagues in our business than we did three years ago! Other initiatives have played a part, but I’d imagine the game changer has been Sapia as we’ve had some direct feedback from a transgender colleague that they felt more confident with our recruitment process than they did in other applications! David Nally, HR Manager, Woodie’s UK |
So why not start with the people you bring into your company, at all levels? Why not begin with the way you attract, assess, and select talent?
With advanced conversational Ai, you can set realistic DEI targets and measure them comprehensively, ensuring access to the best talent from diverse backgrounds. A sophisticated Interviewer is not just another chatbot that operates on a fixed set of rules. For instance, our conversational Ai delves deep into interview responses to understand each candidate’s unique attributes in a fair and objective manner.
Our Smart Interviewer helps you track and meet these three key diversity goals.
Our proprietary interview response database is made up of more than 500,000,000 words, enabling us to conduct the most sophisticated response analysis in the recruitment industry. We can do this on a macro scale (e.g. across countries, cultures, industries, and role types); or for individual companies.
Take these findings, combining data from a range of our customers, globally:
Figure 1: Gender stats across applicants, Ai recommendations and hired
Thanks to our machine-learning capabilities, and the vastness of our database, we can provide the hiring team with real-time analytics on the following diversity hiring goals:
By employing a smart interviewing Ai at the first stage of recruitment, we can prove progress with regards to inclusivity and bias reduction. These aggregate company data show that while the expected number of female applicants exceeded the number of those that actually applied, the number of recommendations made by our Smart Interviewer also beat expectations (effectively compensating for the top-of-funnel bias). We can also see that the rate of observed female hires far exceeded the expected number.
What does this indicate? With merely three metrics, you can discern the advancements made in your DEI recruiting goals – and if the performance doesn’t meet the mark, it’s evident at which stage the targets falter.
It is important to note that the recommendations of our Ai are based solely on its analysis of candidate responses in the chat-based interview. Its suitability criteria is based, among other factors, on HEXACO personality modeling and accurate assessments of various job related competencies such as team work, critical thinking and communication skills.
Our data also keep biases in check at each stage of the recruitment process, depending on the role type. As you can see, for all three roles, this company’s hiring outcomes were within regulatory limits (as stipulated by the US Equal Employment Opportunity Commission (EEOC)) across the three stages of their funnel: Applications received, recommendations made, and the hiring decisions ultimately made by the hiring team. The final step, it is important to note, happens independently of our Ai: It is a human decision. Despite this, the outcome data is recorded, so that the company can compare its outcomes against inputs and recommendations to see if late-funnel biases are occurring.
Figure 2: Role-type-based gender bias. Mid line represents zero bias. Shaded regions signify the tolerance range. Right of line favors females, while left favors males.
The feedback from candidates is extremely positive: Company A’s strivings for fairness and equality in its processes has resulted in a candidate satisfaction score of 98.7% for females, and 98.1% for males. Better still, the interview dropout rate across the board is less than 10%.
Parallel to gender, our ethnicity analytics equip hiring managers to efficiently set and accurately monitor diversity smart goals examples for ethnic representation in recruitment. Company A, as depicted in Figure 2, is pioneering in this respect: Its BAME (Black, Asian, and Ethnic Minorities) recommendation rate stands at 46.5%, outpacing expectations, while its non-BAME recommendation rate is at 37.1%.
Our data has also helped Company A to increase its hiring commitments for First Nations people: The rate currently sits at 4.5%, from 4,000 candidates, above the national average of 1.8% (2018-19). This number is expected to increase over the coming year.
The data we collect helps us, as well as our customers, understand the extent to which personality determines role suitability and general workplace success. It also helps us to eliminate long-standing biases that negatively impact certain candidates, despite the fact that said candidates may be highly suitable to the roles for which they are applying.
For example, people high in trait agreeableness (compassionate, polite, not likely to dissent or proffer controversial viewpoints) tend to underperform in the traditional face-to-face interviews. Hiring managers may assume, based on this, that they are unable to lead, or are not a ‘culture fit’. However, a face-value assessment of agreeableness is not a reliable predictor of candidate potential. Only scientific analysis of HEXACO traits can make this call with accuracy.
Take these two visualizations, showing how different personality traits affect the recommendations made by our Ai. Females (red dot) and males (blue dot) are slightly different in agreeableness, but there is virtually no difference in their conscientiousness, a strong predictor of job performance. As a result of being able to measure conscientiousness accurately, our system can effectively allow for higher levels of agreeableness – or cancel out the negative face-value judgements typically made in face-to-face interviews. Despite these personality differences, as shown in Figure 1, Sapia Ai recommendations for both male and female groups remain similar (~40%). This results in a fairer chance for all, and a wider pool of candidates. In this case, this is to the benefit of females.
Figure 3: Male (blue) and Female (red) personality trait differences
The world is changing, and we can no longer continue to take a “We’ll see what happens” approach to the ‘S’ in ESG. Many investors are pushing companies for better diversity and inclusion outcomes. At Sapia, our data show that fair, scientifically valid, and explainable Ai can produce better outcomes for peoples of all genders and ethnicities. The companies that have adopted our Ai approach are seeing strong improvement in their own DEI practices and results.
Over and above assisting our clients, our commitment to DEI is embodied in a guiding vision of our own: Our FAIR Framework. This embeds an approach that ensures our systems and processes are ethical and transparent. Many similar Ai systems operate in a ‘black box’, providing little knowledge about how their algorithms help make important decisions or create issues like amplifying biases. We are committed to a fairer world, free of bias – and, with every candidate interviewed, our data is bringing us closer.
We can’t hide from reality anymore. Talent needs are shifting overnight, and AI is redefining what it means to work. Traditional talent frameworks are no longer fit for purpose. At Sapia.ai, we believe the future of talent strategy lies in a smarter, fairer, and more adaptive way of defining what great looks like.
Our AI hiring platform is built on the largest proprietary dataset of interview answers globally – we’re a data company at heart, and we’ve seen the power of data-driven people methodology in transforming how organisations hire and retain good talent.
So, when it came to building a new Competency Framework that could be leveraged globally for hiring for any role at any scale, of course, we used a ground-up, data-led methodology that bridges the gap between organisational psychology and AI.
Conventional frameworks are typically crafted through expert interviews and focus groups. While valuable, they tend to be subjective, static, and too slow to keep pace with evolving job demands. As roles become more fluid and technology augments or replaces task-based skills, organisations need a new way to understand the human capabilities that genuinely matter for performance.
We wanted to identify enduring, job-agnostic competencies that reflect what drives success in a modern workplace – capabilities like adaptability, resilience, learning agility, and customer orientation.
(Why competencies and not just skills? Read why here.)
Sapia.ai’s methodology is rooted in the science of human behaviour but powered by cutting-edge AI. We asked two core questions:
The answer to both: yes.
We began with a rich dataset of over 37,000 job descriptions across industries and role types. Using large language models (LLMs) and advanced NLP techniques, we extracted over 200,000 behavioural descriptors. These were distilled down through a four-step process:
This resulted in a refined list of 25 human-centric competencies, each with clear behavioural indicators and practical relevance across a wide range of roles.
Our framework is intelligent, but importantly, it’s adaptive. Organisations can apply this methodology to their own job descriptions to discover custom competencies. This bottom-up, role-data-led approach ensures alignment to real work, not just theoretical models.
And because the framework integrates directly with our AI-powered hiring tools, you get a connected system that brings your talent strategy to life.
Our framework comes to life in the following tools:
Skills alone cannot predict success. Competencies do. As AI continues transforming how we work, Sapia.ai’s Competency Framework offers a scalable, scientific, and fair foundation for hiring and developing the talent of tomorrow.
If you’re a CHRO or Head of Recruitment at an enterprise today, chances are you’ve been inundated with messages about the importance of “skills-based hiring.” LinkedIn’s recent Work Change Report (2025) is full of compelling data: a 140% increase in the rate at which professionals are adding new skills to their profiles since 2022, and a projection that by 2030, 70% of the skills used in most jobs today will have changed.
This is essential reading. But there’s a missed opportunity: the singular focus on “skills” fails to acknowledge the real metric that talent leaders need to be using to future-proof their workforce — competencies.
But skills on their own — even soft ones — are generic, disjointed, and often disconnected from real-world performance. In contrast:
Put simply, competencies answer the all-important question: Can this person apply the right skills, in the right way, at the right time, to deliver results in our environment?
The Work Change Report outlines a future where job titles are fluid, roles evolve quickly, and AI is a constant disruptor. This creates three massive challenges for hiring at scale:
Skills alone don’t tell us whether someone can succeed in a role that will look different 12 months from now. But competencies can. Because they measure not just what a person knows, but how they apply it.
The LinkedIn report highlights a critical insight: organisations now prioritise agility in entry-level hiring. And there’s a good reason for that. With professionals expected to hold twice as many jobs over their careers compared to 15 years ago, adaptability is not just a nice-to-have. It’s core to success.
But you can’t measure agility with a keyword on a CV. You measure it by looking at competencies like:
When you shift the focus away from skills to behavioural competencies that can be defined, observed, and assessed in structured ways, you open yourself up to a much more dynamic and more useful way of managing talent.
To hire effectively at scale, particularly in a technology-driven world of work, talent leaders must shift their lens:
LinkedIn’s data shows that people are learning more skills more quickly than ever. But the real question for talent leaders like you is: Are those skills being applied in ways that drive value? Are we hiring for task proficiency or performance?
The truth is that the organisations that will thrive in an AI-driven, skills-fluid economy aren’t the ones chasing the next hot skill. They’re the ones designing systems to identify, develop and scale competence.
Sapia.ai has developed a comprehensive Competency Framework using a data-driven approach. Download the full paper here.
Every day, we read stories of increased fake or AI-assisted applications. Tools like LazyApply are just one of many flooding the market, driving up applicant volumes to never-before-seen levels.
As an overwhelmed hiring function, how do you find the needle in the haystack without using an army of recruiters to filter through the maze?
At Sapia.ai, we help global enterprises do just that. Many of the world’s most trusted brands, such as Qantas Group, have relied on our hiring platform as a co-pilot for better hiring since 2020.
Our Chat Interview has given millions of candidates a voice they wouldn’t have had – enabling them to share in their own words why they’re the best fit for the role. To find the people who belong with their brands, our customers must trust that their candidates represent themselves. Thus, they want to trust that our AI is analysing real human answers—not answers from a machine.
The Rise of GPT
When ChatGPT went viral in November 2022, we immediately adopted a defensive strategy. We had long been flagging plagiarised candidate responses, but then, we needed to act fast to flag responses using artificially generated content (‘AGC’).
Many companies were in the same position, but Sapia.ai was the only company with a large proprietary data set of interview answers that pre-dated GPT and similar tools: 2.5 billion words written by real humans.
That data enabled us to build a world-first:- an LLM-based AGC detector for text-based interviews, recently upgraded to v2.0 with 99% accuracy and a false positive rate of 1%. An NLP classification model built on Sapia.ai proprietary data that operates across all Sapia.ai chat interviews.
Full Transparency with Candidates
Because we value candidate trust as much as customer trust, we wanted to be transparent with candidates about our ability to detect artificially generated content (AGC). As an LLM, we could identify AGC in real time and warn candidates that we had detected it.
This has had a powerful impact on candidate behaviour. Since our AGC detector went live, we have seen that the real-time flagging acts as a real-time disincentive to use tools like ChatGPT to generate interview responses.
The detector generates a warning if 3 or more answers are flagged as having artificially generated content. The Sapia.ai Chat Interview uses 5 open-ended interview questions for volume hiring roles, such as retail, contact centre, and customer service, and 6 questions for professional roles, such as engineers, data scientists, graduates, etc.
Let’s Take a Closer Look at the Data…
We see that using our AGC detector LLM to communicate live with candidates in the interview flow when artificial content has been detected has a positive effect on deterring candidates from using AI tools to generate their answers.
The rate of AGC use declines from 1 question flagged to 5 questions – raising the flag on one question is generally enough to deter candidates from trying again.
The graph below shows the number of candidates, from a total of almost 2.7m, that used artificially generated content in their answers.
Differences in AGC Usage Rate by Groups
We see no meaningful differences in candidate behaviour based on the job they are applying for or based on geography.
However, we have found differences by gender and ethnicity – for example, men use artificially generated content more than women. The graph below shows the overall completion ratios by gender – for all interviews on the left and for interviews where the number of questions with AGC detected is 5 or more on the right.
Perception of Artificially Generated Content by Hirers.
We’re curious to understand how hirers perceive the use of these tools to assist candidates in a written interview. The creation of the detector was based on the majority of Sapia.ai customers wanting transparency & explainability around the use of these tools by candidates, often because they want to ensure that candidates are using their own words to complete their interviews and they want to avoid wasting time progressing candidates who are not as capable as their chat interview suggests.
However, some of our customers feel that it’s a positive reflection of the candidate, showing that they are using the tools available to them to put their best foot forward.
It’s a mix of perspectives.
Our detector labels it as the use of artificially generated content. It’s up to our customers how they use that information in their decision-making processes.
This concept of having a human in the loop is one of the key dimensions of ethical AI, and we ensure that it is used in every AI-related hiring product we build.
Interested in the science behind it all? Download our published research on developing the AGC detector 👇