Back

Diversity Hiring Goals 2024: Examples, Check Goals, Measurables

More money is flowing into Environmental, Social and Governance (ESG) than ever. In 2021, investors poured $649 billion into ESG-focused funds worldwide, up 90% from the $542 billion invested in 2020. In the UK, over 21% of investors plan to back funds and companies with comprehensive ESG strategies by 2025. And in Australia, more than 55% of super funds are using responsible investment approaches to inform strategic asset allocation.

All this investment has prompted a sharper focus on social issues across major companies – the S in Environmental, Social, and Governance. The great news is that investment in the big S, in turn, means more money and attention toward progress in Diversity, Equity and Inclusion (DEI).

Executives who underscore the significance of diversity in hiring understand that an impactful DEI strategy must originate from the highest ranks – consider the Australian superannuation fund HESTA and its 40:40 vision as a prime example. However, for the strategy to be truly effective, diversity hiring ideas need to permeate all levels of the organization. It’s also critical to meticulously track and measure the extent to which we are achieving our diversity hiring goals to ensure real progress is made.

Both boards and shareholders want measurable change in DEI, and fast. According to a Harvard Business Review study of S&P 500 earnings calls, the frequency with which CEOs talk about issues of equity, fairness, and inclusion has increased by 658% since 2018. The momentum is clear, and expectations are that this will only increase further in the coming years.

Diversity goals need to be measurable, today

According to another HBR article, 40% of US companies discussed DEI in their Q2 2020 earnings calls, which is a huge step up from the 4% of companies that did the year before. And with 1,600 CEOs pledging to take action on DEI, setting goals and tracking progress remain top priorities.

DEI and ESG are big challenges, and we might take myriad possible approaches in trying to solve them. Some companies may start at the executive level (HESTA, as an example), while others may invest in partnerships and outreach programs. The spectrum of options can easily become overwhelming.

“Interestingly, I’m just looking at our workforce profile and have been discussing the changes in diversity since we updated our recruitment approach last March. Not only have we hired three times more ethnic minorities and 1.5 times more women, but we now have twice as many LGBTQI+ colleagues in our business than we did three years ago! Other initiatives have played a part, but I’d imagine the game changer has been Sapia as we’ve had some direct feedback from a transgender colleague that they felt more confident with our recruitment process than they did in other applications! 

David Nally, HR Manager, Woodie’s UK

So why not start with the people you bring into your company, at all levels? Why not begin with the way you attract, assess, and select talent?

With advanced conversational Ai, you can set realistic DEI targets and measure them comprehensively, ensuring access to the best talent from diverse backgrounds. A sophisticated Interviewer is not just another chatbot that operates on a fixed set of rules. For instance, our conversational Ai delves deep into interview responses to understand each candidate’s unique attributes in a fair and objective manner.

Our Smart Interviewer helps you track and meet these three key diversity goals.

  1. Gender bias

Our proprietary interview response database is made up of more than 500,000,000 words, enabling us to conduct the most sophisticated response analysis in the recruitment industry. We can do this on a macro scale (e.g. across countries, cultures, industries, and role types); or for individual companies.

Take these findings, combining data from a range of our customers, globally:

Diversity and inclusion analytics

Figure 1: Gender stats across applicants, Ai recommendations and hired

Thanks to our machine-learning capabilities, and the vastness of our database, we can provide the hiring team with real-time analytics on the following diversity hiring goals:

  1. Number of observed female applicants vs number of expected female applicants (and the same for male applicants)
  2. Diversity smart goals examples such as the overall hiring rate of females vs males
  3. Overall rate of female vs male recommendations made by our Ai to meet diversity targets

By employing a smart interviewing Ai at the first stage of recruitment, we can prove progress with regards to inclusivity and bias reduction. These aggregate company data show that while the expected number of female applicants exceeded the number of those that actually applied, the number of recommendations made by our Smart Interviewer also beat expectations (effectively compensating for the top-of-funnel bias). We can also see that the rate of observed female hires far exceeded the expected number. 

What does this indicate? With merely three metrics, you can discern the advancements made in your DEI recruiting goals – and if the performance doesn’t meet the mark, it’s evident at which stage the targets falter.

It is important to note that the recommendations of our Ai are based solely on its analysis of candidate responses in the chat-based interview. Its suitability criteria is based, among other factors, on HEXACO personality modeling and accurate assessments of various job related competencies such as team work, critical thinking and communication skills.

Our data also keep biases in check at each stage of the recruitment process, depending on the role type. As you can see, for all three roles, this company’s hiring outcomes were within regulatory limits (as stipulated by the US Equal Employment Opportunity Commission (EEOC)) across the three stages of their funnel: Applications received, recommendations made, and the hiring decisions ultimately made by the hiring team. The final step, it is important to note, happens independently of our Ai: It is a human decision. Despite this, the outcome data is recorded, so that the company can compare its outcomes against inputs and recommendations to see if late-funnel biases are occurring.

Solving gender bias with data

Figure 2: Role-type-based gender bias. Mid line represents zero bias. Shaded regions signify the tolerance range. Right of line favors females, while left favors males.

The feedback from candidates is extremely positive: Company A’s strivings for fairness and equality in its processes has resulted in a candidate satisfaction score of 98.7% for females, and 98.1% for males. Better still, the interview dropout rate across the board is less than 10%.

  1. Ethnicity bias

Parallel to gender, our ethnicity analytics equip hiring managers to efficiently set and accurately monitor diversity smart goals examples for ethnic representation in recruitment. Company A, as depicted in Figure 2, is pioneering in this respect: Its BAME (Black, Asian, and Ethnic Minorities) recommendation rate stands at 46.5%, outpacing expectations, while its non-BAME recommendation rate is at 37.1%.

Our data has also helped Company A to increase its hiring commitments for First Nations people: The rate currently sits at 4.5%, from 4,000 candidates, above the national average of 1.8% (2018-19). This number is expected to increase over the coming year.

  1. Personality biases

The data we collect helps us, as well as our customers, understand the extent to which personality determines role suitability and general workplace success. It also helps us to eliminate long-standing biases that negatively impact certain candidates, despite the fact that said candidates may be highly suitable to the roles for which they are applying. 

For example, people high in trait agreeableness (compassionate, polite, not likely to dissent or proffer controversial viewpoints) tend to underperform in the traditional face-to-face interviews. Hiring managers may assume, based on this, that they are unable to lead, or are not a ‘culture fit’. However, a face-value assessment of agreeableness is not a reliable predictor of candidate potential. Only scientific analysis of HEXACO traits can make this call with accuracy.

Take these two visualizations, showing how different personality traits affect the recommendations made by our Ai. Females (red dot) and males (blue dot) are slightly different in agreeableness, but there is virtually no difference in their conscientiousness, a strong predictor of job performance. As a result of being able to measure conscientiousness accurately, our system can effectively allow for higher levels of agreeableness – or cancel out the negative face-value judgements typically made in face-to-face interviews. Despite these personality differences, as shown in Figure 1, Sapia Ai recommendations for both male and female groups remain similar (~40%). This results in a fairer chance for all, and a wider pool of candidates. In this case, this is to the benefit of females.

diversity by personality type

Figure 3: Male (blue) and Female (red) personality trait differences

Bringing it all together

The world is changing, and we can no longer continue to take a “We’ll see what happens” approach to the ‘S’ in ESG. Many investors are pushing companies for better diversity and inclusion outcomes. At Sapia, our data show that fair, scientifically valid, and explainable Ai can produce better outcomes for peoples of all genders and ethnicities. The companies that have adopted our Ai approach are seeing strong improvement in their own DEI practices and results.

Over and above assisting our clients, our commitment to DEI is embodied in a guiding vision of our own: Our FAIR Framework. This embeds an approach that ensures our systems and processes are ethical and transparent. Many similar Ai systems operate in a ‘black box’, providing little knowledge about how their algorithms help make important decisions or create issues like amplifying biases. We are committed to a fairer world, free of bias – and, with every candidate interviewed, our data is bringing us closer.


Blog

How leading retailers are using AI-Native Hiring

Retail leaders have embraced AI to improve supply chains, automate checkout, and enhance customer experience. But what about finding the people who deliver that customer experience?

AI brings incredible possibilities to supercharge how retailers hire, develop, and retain talent.

At Sapia.ai, we helped iconic retailers like Woolworths, Starbucks, Holland & Barrett, and David Jones reimagine hiring from the ground up – replacing resumes, ghosting, and gut feel with structured, ethical AI that delivers performance and fairness at scale.

The Retail Problem: Volume, Turnover, and Ghosting

Retail is high volume. It’s high churn. And it’s high stakes for candidate experience:

  • Candidates ghosted during slow hiring cycles
  • Store managers are overloaded with admin
  • Recruiters are overwhelmed with 100,000+ seasonal applicants
  • Talent is overlooked due to bias or unfair screening processes, not a lack of potential

And yet, most hiring still relies on broken tools: resumes, forms, manual processes, and outdated systems.

Sapia.ai: The AI-Native Hiring Engine Built for Retail

Our platform automates the entire “apply to decide” journey, leveraging AI & automation to streamline the hiring process & bring intelligence into retail hiring. 

Smart Interviewer™: Mobile-first, chat-based, structured interviews for a holistic candidate assessment. 

Live Interview™: AI-driven bulk interview scheduling without calendar chaos.

InterviewAssist™: Instant interview guide generation.

Discover Insights: Embedded analytics to track hiring health in real-time.

Phai: GenAI coach for career and leadership potential.

Unlike resume parsing or generic chatbots, Sapia.ai assesses soft skills, communication, and culture fit using natural language processing and validated psychometrics. It’s ethical AI built in, not bolted on. 

From Application to Interview in Under 24 Hours

Candidates don’t want to wait. They don’t want to be ghosted. And they don’t want resumes to define them.

> 80% of Sapia.ai chat interviews are completed in under 24 hours.

We see consistently high completion across categories: grocery, merchandising, home improvement, and luxury retail.

“It was fast, fair, and I actually got feedback. That never happens.” – Retail Candidate Feedback

Real Impact, Across Every Retail Category

Sapia.ai powers hiring for millions of candidates across diverse retail environments:

Impact of Sapia.ai on Retail Hiring in 2024
Category Hours Saved FTEs Saved  Cost Saved
Grocery 272k 131 $6.5m
General Merchandise 193k 93 $4.6m
Specialty Retail 133k 64 $3.2m
Home Improvements 103k 50 $2.5m
Merchandising 22k 11 $0.5m
Luxury 9k 4 $0.2m

The savings created by intelligent, AI-native automation have unlocked team capacity, impacted retailers’ P&L, and improved store readiness.

Speed That Delivers Real ROI

Every candidate gets interviewed instantly. No waiting. No bias. Just fast, fair, data-backed decisions. This generates real impact for retailers who previously relied on slow, outdated processes to handle thousands of applicants. 

  • Woolworths: 5,000 hours saved in a single week
  • Starbucks: Doubled hiring capacity, 91.8% completion
  • Holland & Barrett: Time to hire cut from 20 to 7 days
  • Woodie’s: 3x more ethnic minorities hired in 3 months

DEI by Design, Not by Mandate

With Sapia.ai:

  • 98% of candidates opt in to demographic questions
  • Zero adverse impact detected across gender, ethnicity, and disability
  • 1.5–3x improvements in diverse hiring rates

DEI Fairness Scores (based on actual hiring data):

Gender: 1.03 (vs customer baseline of 1.01)

Ethnicity: 1.15 (vs customer baseline of 0.74)

Why? Because ethical AI removes what humans can’t unlearn: bias. With a candidate experience that is inclusive by design, retailers can ensure fairness in screening, and measure it in hiring.  

Candidate Experience = Brand Experience

Retail candidates are your customers. And the experience you give them matters. We have built a brand advocacy engine that delights candidates and gives you the data to prove it. 

  • 9.2/10 CSAT across 2.6 M+ retail candidates
  • NPS: 78 (30+ points above industry benchmark)
  • 87% more likely to recommend the company’s products post-interview

Responsible, Explainable AI Built for Retail

Not all AI is created equally. Since 2018, Sapia.ai has been built on a foundation of responsible AI:

  • No use of resumes or scraped data
  • Hosted securely via AWS Bedrock
  • Claude-powered LLM scoring with model cards and explainability
  • Independent audits on bias, privacy, and methodology

“We can’t go back to life before Sapia.ai. We used to spend half the day reading resumes.”

— Talent Lead, Starbucks AU

What’s at Stake: Time, Brand, and Revenue

Every day spent using outdated hiring methods costs retailers:

  • Wasted recruiter hours
  • Lost revenue from unfilled roles
  • Bad churn that drains training budgets
  • Lower customer satisfaction from poor-fit hires.

With Sapia.ai, you get the productivity unlock retail hiring demands, and the intelligence your talent deserves.

Want to see how fast, fair, and human retail hiring can be?

 

Book a demo

Read Online
Blog

Reinventing the Competency Framework: A Data-Driven Approach for the AI Era

We can’t hide from reality anymore. Talent needs are shifting overnight, and AI is redefining what it means to work. Traditional talent frameworks are no longer fit for purpose. At Sapia.ai, we believe the future of talent strategy lies in a smarter, fairer, and more adaptive way of defining what great looks like. 

Our AI hiring platform is built on the largest proprietary dataset of interview answers globally – we’re a data company at heart, and we’ve seen the power of data-driven people methodology in transforming how organisations hire and retain good talent.  

So, when it came to building a new Competency Framework that could be leveraged globally for hiring for any role at any scale, of course, we used a ground-up, data-led methodology that bridges the gap between organisational psychology and AI.

Why Rethink Competency Frameworks?

Conventional frameworks are typically crafted through expert interviews and focus groups. While valuable, they tend to be subjective, static, and too slow to keep pace with evolving job demands. As roles become more fluid and technology augments or replaces task-based skills, organisations need a new way to understand the human capabilities that genuinely matter for performance.

We wanted to identify enduring, job-agnostic competencies that reflect what drives success in a modern workplace – capabilities like adaptability, resilience, learning agility, and customer orientation.

(Why competencies and not just skills? Read why here.)

Our Approach: Where AI Meets I/O Psychology

Sapia.ai’s methodology is rooted in the science of human behaviour but powered by cutting-edge AI. We asked two core questions:

  1. Can we make competency discovery agile, scalable, and evidence-based?
  2. Can we use AI to automate the process without losing the rigour of traditional psychology?

The answer to both: yes.

We began with a rich dataset of over 37,000 job descriptions across industries and role types. Using large language models (LLMs) and advanced NLP techniques, we extracted over 200,000 behavioural descriptors. These were distilled down through a four-step process:

  1. Behavioural Descriptor Extraction
  2. Clustering and Labeling
  3. Cluster Analysis by I/O Psychologists
  4. Thematic Categorisation and Definition of Competencies

This resulted in a refined list of 25 human-centric competencies, each with clear behavioural indicators and practical relevance across a wide range of roles.

Built to Scale. Built to Adapt.

Our framework is intelligent, but importantly, it’s adaptive. Organisations can apply this methodology to their own job descriptions to discover custom competencies. This bottom-up, role-data-led approach ensures alignment to real work, not just theoretical models.

And because the framework integrates directly with our AI-powered hiring tools, you get a connected system that brings your talent strategy to life. 

Our framework comes to life in the following tools: 

  • Job Analyser – Starting with a job description, it creates a unique competency profile for each role to build tailored structured interviews in seconds.
  • Structured Chat-based Interviews that assess candidates’ responses according to the competency profile for consistent candidate assessment.
  • Talent Insights Reports from every interview with deep reasoning and explainability for fair and objective hiring decisions.
  • Phai Career Coach for internal mobility and employee growth that considers their competency strengths and career aspirations.

The Future of Talent Acquisition & Development is Competency-First

Skills alone cannot predict success. Competencies do. As AI continues transforming how we work, Sapia.ai’s Competency Framework offers a scalable, scientific, and fair foundation for hiring and developing the talent of tomorrow.

Want to see how it works? Download the full framework.


 

Read Online
Blog

It’s Time to Stop Hiring for Skills, and Start Hiring for Competencies

If you’re a CHRO or Head of Recruitment at an enterprise today, chances are you’ve been inundated with messages about the importance of “skills-based hiring.” LinkedIn’s recent Work Change Report (2025) is full of compelling data: a 140% increase in the rate at which professionals are adding new skills to their profiles since 2022, and a projection that by 2030, 70% of the skills used in most jobs today will have changed.

This is essential reading. But there’s a missed opportunity: the singular focus on “skills” fails to acknowledge the real metric that talent leaders need to be using to future-proof their workforce — competencies.

Skills vs Competencies: The Crucial Distinction

  • Skills are task-specific capabilities. Think Python programming, Excel, or even negotiation.

  • Soft skills refer to interpersonal or behavioural qualities like adaptability, communication, and resilience.

But skills on their own — even soft ones — are generic, disjointed, and often disconnected from real-world performance. In contrast:

  • Competencies are clusters of skills, knowledge, behaviours and abilities that are observable, measurable, and context-specific.

Put simply, competencies answer the all-important question: Can this person apply the right skills, in the right way, at the right time, to deliver results in our environment?

Why Competencies Matter More Than Ever

The Work Change Report outlines a future where job titles are fluid, roles evolve quickly, and AI is a constant disruptor. This creates three massive challenges for hiring at scale:

  1. Roles are changing faster than static skill frameworks can keep up

  2. Job candidates may have non-linear, cross-functional backgrounds

  3. The shelf-life of technical skills is shrinking rapidly

Skills alone don’t tell us whether someone can succeed in a role that will look different 12 months from now. But competencies can. Because they measure not just what a person knows, but how they apply it.

Adaptive Talent: The New Competitive Advantage

The LinkedIn report highlights a critical insight: organisations now prioritise agility in entry-level hiring. And there’s a good reason for that. With professionals expected to hold twice as many jobs over their careers compared to 15 years ago, adaptability is not just a nice-to-have. It’s core to success.

But you can’t measure agility with a keyword on a CV. You measure it by looking at competencies like:

  • Learning agility

  • Change resilience

  • Cross-functional collaboration

  • Problem-solving in ambiguous contexts

When you shift the focus away from skills to behavioural competencies that can be defined, observed, and assessed in structured ways, you open yourself up to a much more dynamic and more useful way of managing talent.

Building a Competency-Based Talent Framework

To hire effectively at scale, particularly in a technology-driven world of work, talent leaders must shift their lens:

  1. Define Role-Specific Competencies: Move beyond job descriptions based on qualifications or vague skill sets. Break roles down into measurable competencies that reflect current and emerging performance expectations. This step is crucial for organisations to be able to accurately assess role-fit in the next stages. Sapia.ai does this automatically, taking job descriptions and building role-specific competency models in seconds.

  2. Assess Competencies Fairly and Objectively: Use structured behavioural interviews, ideally at scale. These provide a much more accurate picture of a candidate’s readiness than self-reported skills or credentials. Sapia.ai’s AI powered interviews enable competency assessment, at scale.

  3. Build Pathways for Development and Internal Mobility: A competency framework makes it easier to identify transferable strengths, development gaps, and future-fit potential. It gives employees clarity on how to grow within the business. Using an AI-powered coach can help ensure that talent is being continuously developed against the organisation’s competency framework.

The Future of Work Requires Depth, Not Just Breadth

LinkedIn’s data shows that people are learning more skills more quickly than ever. But the real question for talent leaders like you is: Are those skills being applied in ways that drive value? Are we hiring for task proficiency or performance?

The truth is that the organisations that will thrive in an AI-driven, skills-fluid economy aren’t the ones chasing the next hot skill. They’re the ones designing systems to identify, develop and scale competence.

Keen to Shift to Competencies, but Lacking a Framework? 

Sapia.ai has developed a comprehensive Competency Framework using a data-driven approach. Download the full paper here.


 

Read Online