Back

Stop Investing in Employer Branding if you’re not Investing in Candidate Experience

Employer branding is a crucial element for attracting top talent. A strong employer brand not only helps attract candidates but also enhances the company’s reputation and employee retention rates. However, one of the often overlooked aspects of employer branding is the experience that candidates have when applying for a role.

A retailer invests in the in-store experience, as they understand that customers need to have a great experience up to the moment of purchase to secure the sale. It’s the same for candidates.

The difference in experience between many employers’ flashy career sites and their application process is stark and often surprising. Candidates explore a heavily branded, experiential website that showcases the brand, only to be hit with endless pages of forms and faceless CV uploads once they hit apply.

In contrast, investing in a positive candidate experience can significantly impact an organization’s ability to attract and retain the best talent, making it an essential part of any comprehensive employer branding strategy.

Understanding Candidate Experience

Candidate experience refers to the overall perception and feelings a candidate has about an organization throughout the recruitment process. Just as any organisation obsesses over customer experience, so too should the HR function obsess over candidate experience.

Your candidate experience is shaped by various stages, including:

  • Awareness: How candidates first learn about your organization and its job openings.
  • Consideration: The research and evaluation process candidates go through to determine if they want to apply.
  • Application: The process of submitting a job application.
  • Assessment / Interview: The experience a candidate has when being assessed and/or interviewed for the role.
  • Decision: The outcome of the application, whether it’s a job offer or rejection.
  • Onboarding: The initial experience of new hires as they join the organization.

Each stage is critical in shaping a candidate’s overall perception of your brand, which influences their decision to join the organization, and what they share of their experience with others.

The Link Between Candidate Experience and Employer Branding

A candidate’s experience can significantly impact an organization’s employer brand. Here’s how:

  • Positive Experiences: Candidates who have positive experiences are more likely to accept job offers, recommend the organization to others, and even become customers. A smooth, transparent, and respectful recruitment process can leave a lasting impression, enhancing your brand’s reputation.
  • Negative Experiences: Conversely, negative experiences can harm an organization’s reputation. Candidates who feel undervalued or disrespected during the recruitment process may share their experiences on social media and review sites like Glassdoor and Indeed, deterring other potential candidates from applying. They can also deter the candidate from interacting with you as a consumer. For consumer-facing organisations hiring in high volume, this impacts revenue.

Benefits of a Positive Candidate Experience

Investing in a positive candidate experience can yield several benefits:

  • Higher-Quality Applicants: Candidates who have positive experiences are more likely to apply, and likely to share their experiences with others, increasing the quality of the applicant pool.
  • Increased Candidate Engagement: Reduced dropoff and leakage due to an engaging experience means more candidates remain through your hiring process, giving you a better chance of finding the candidates who belong with you. On average, candidates who are invited to a chat interview powered by Sapia.ai are 80% likely to complete it.
  • Improved Employee Engagement and Retention: New hires who start with a positive experience could be more likely to be engaged and stay with the company longer.
  • Enhanced Employer Brand: A positive candidate experience strengthens the employer brand, making the company more attractive to top talent. Brands that have invested in their candidate experience by leveraging Sapia.ai to give everyone a chat interview and personalised insights are elevating their employer brand. 81% of candidates are likely to recommend others to apply for a job with the company, and 82% are more likely to recommend the products and services of the company based on their interview experience.

Key Elements of a Positive Candidate Experience

To create a positive candidate experience, organizations should focus on several key elements:

  • Clear and Transparent Communication: Keep candidates informed throughout the recruitment process. Regular updates, clear job descriptions, and honest feedback are crucial.
  • User-Friendly Application  Process: Ensure the application process is simple and intuitive. Avoid lengthy forms and streamline steps to make it easier for candidates to apply. Using an ATS that integrates with other tools that candidates need to engage with such as assessment providers, will streamline the process and keep it consistent for candidates.
  • Respectful, Engaging & Inclusive Assessment & Interview Process: Treat candidates with respect and give them the space to bring their best selves to their assessment. Ensure that up-front assessments are untimed, chat-based, and blind – meaning all candidates can confidently put their best foot forward without fear of bias.
  • Leverage Smart Automation To Progess Top Candidates Quickly: If you can’t move quickly, the top candidates will likely get snapped up before you engage with them. Using smart automation with tools like Sapia.ai, to automatically progress the top candidates to the next stage ensures they remain engaged in your process.
  • Timely and Constructive Feedback: Providing feedback promptly, whether positive or negative, shows respect for the candidate’s time and effort. Using an assessment like Sapia ensures that every candidate gets positive, non-directional feedback from their initial assessment, automatically.
  • Effective Onboarding Practices: Once a candidate is hired, an effective onboarding process can set the tone for their future with the company, helping them feel valued and integrated from day one.

The Case for a Chat-Based Selection Process in Enhancing Candidate Experience

Incorporating an AI chat-based interview into your selection process can significantly enhance the candidate experience. Here’s why:

  • Low Pressure: Chat-based AI interviews are untimed and allow candidates to respond at their own pace, reducing the stress and anxiety often associated with traditional interviews.
  • Accessibility: Mobile-friendly chat interviews make it easier for candidates to participate from any location, at any time, using their smartphones.
  • Inclusivity: Rather than relying on CVs and Cover Letters, this format ensures that everyone gets an interview and feedback, making the process fairer and more inclusive.
  • Engagement: Chat-based interviews are engaging and interactive, helping candidates feel more connected to the organization and, through the structured interview, giving candidates a realistic job preview.
  • Unbiased: Automated chat interviews help remove unconscious bias from the recruitment process, ensuring a fair evaluation based on responses rather than personal biases.

For a deep dive into the importance of candidate experience & how to deliver a world-leading one, check out our Candidate Experience Playbook.


Blog

Neuroinclusion by design. Not by exception.

Why neuroinclusion can’t be a retrofit and how Sapia.ai is building a better experience for every candidate.

In the past, if you were neurodivergent and applying for a job, you were often asked to disclose your diagnosis to get a basic accommodation – extra time on a test, maybe the option to skip a task. That disclosure often came with risk: of judgment, of stigma, or just being seen as different.

This wasn’t inclusion. It was bureaucracy. And it made neurodiverse candidates carry the burden of fitting in.

We’ve come a long way, but we’re not there yet.

Shifting from retrofits to inclusive-by-design

Over the last two decades, hiring practices have slowly moved away from reactive accommodations toward proactive, human-centric design. Leading employers began experimenting with:

  • Sharing interview questions in advance

  • Replacing group exercises with structured simulations

  • Offering a variety of assessment formats

  • Co-designing assessments with neurodiverse candidates

But even these advances have often been limited in scope, applied to special hiring programs or specific roles. Neurodiverse talent still encounters systems built for neurotypical profiles, with limited flexibility and a heavy dose of social performance pressure.

Hiring needs to look different.

Insight 1: The next frontier of hiring equity is universal design

Truly inclusive hiring doesn’t rely on diagnosis or disclosure. It doesn’t just give a select few special treatment. It’s about removing friction for everyone, especially those who’ve historically been excluded.

That’s why Sapia.ai was built with universal design principles from day one.

Here’s what that looks like in practice:

  • No time limits — Candidates answer at their own pace
  • No pressure to perform — It’s a conversation, not a spotlight
  • No video, no group tasks — Just structured, 1:1 chat-based interviews
  • Built-in coaching — Everyone gets personalised feedback

It’s not a workaround. It’s a rework.

Insight 2: Not all “friendly” methods are inclusive

We tend to assume that social or “casual” interview formats make people comfortable. But for many neurodiverse individuals, icebreakers, group exercises, and informal chats are the problem, not the solution.

When we asked 6,000 neurodiverse candidates about their experience using Sapia.ai’s chat-based interview, they told us:

“It felt very 1:1 and trustworthy… I had time to fully think about my answers.”

“It was less anxiety-inducing than video interviews.”

“I like that all applicants get initial interviews which ensures an unbiased and fair way to weigh-up candidates.”

Insight 3: Prediction ≠ Inclusion

Some AI systems claim to infer skills or fit from resumes or behavioural data. But if the training data is biased or the experience itself is exclusionary, you’re just replicating the same inequity with more speed and scale.

Inclusion means seeing people for who they are, not who they resemble in your data set.

At Sapia.ai, every interaction is transparent, explainable, and scientifically validated. We use structured, fair assessments that work for all brains, not just neurotypical ones.

Where to from here?

Neurodiversity is rising in both awareness and representation. However, inclusion won’t scale unless the systems behind hiring change as well.

That’s why we built a platform that:

  • Doesn’t rely on disclosure

  • Removes ambiguity and pressure

  • Creates space for everyone to shine

  • Measures what matters, fairly

Sapia.ai is already powering inclusive, structured, and scalable hiring for global employers like BT Group, Costa Coffee and Concentrix. Want to see how your hiring process can be more inclusive for neurodivergent individuals? Let’s chat. 

Read Online
Blog

Skills Measurement vs Skills Inference – What’s the Difference and Why Does It Matter?

There’s growing interest in AI-driven tools that infer skills from CVs, LinkedIn profiles, and other passive data sources. These systems claim to map someone’s capability based on the words they use, the jobs they’ve held, and patterns derived from millions of similar profiles. In theory, it’s efficient. But when inference becomes the primary basis for hiring or promotion, we need to scrutinise what’s actually being measured and what’s not.

Let’s be clear: the technology isn’t the problem. Modern inference engines use advanced natural language processing, embeddings, and knowledge graphs. The science behind them is genuinely impressive. And when they’re used alongside richer sources of data, such as internal project contributions, validated assessments, or behavioural evidence, they can offer valuable insight for workforce planning and development.

But we need to separate the two ideas:

  • Skills Measurement: Directly observing or quantifying a skill based on evidence of actual performance. 
  • Skills Inference: Estimating the likelihood that someone has a skill, based on indirect signals or patterns in their data. 

The risk lies in conflating the two.

The Problem Isn’t Inference of Skills. It’s the Data Feeding It

CVs and LinkedIn profiles are riddled with bias, inconsistency, and omission. They’re self-authored, unverified, and often written strategically – for example, to enhance certain experiences or downplay others in response to a job ad. 

And different groups represent themselves in different ways. Ahuja (2024) showed, for example, that male MBA graduates in India tend to self-promote more than their female peers. Something as simple as a longer LinkedIn ‘About’ section becomes a proxy for perceived competence.

Job titles are vague. Skill descriptions vary. Proficiency is rarely signposted. Even where systems draw on internal performance data, the quality is often questionable. Ratings tend to cluster (remember the year everyone got a ‘3’ at your org?) and can often reflect manager bias or company culture more than actual output.

Sophisticated ≠ Objective

The most advanced skill inference platforms use layered data: open web sources like job ads and bios, public databases like O*NET and ESCO, internal frameworks, even anonymised behavioural signals from platform users. This breadth gives a more complete picture, and the models powering it are undeniably sophisticated.

But sophistication doesn’t equal accuracy.

These systems rely heavily on proxies and correlations, rather than observed behaviour. They estimate presence, not proficiency. And when used in high-stakes decisions, that distinction matters.

Transparency (or Lack Thereof)

In many inference systems, it’s hard to trace where a skill came from. Was it picked up from a keyword? Assumed from a job title? Correlated with others in similar roles? The logic is rarely visible, and that’s a problem, especially when decisions based on these inferences affect access to jobs, development, or promotion.

Presence ≠ Proficiency

Inferred skills suggest someone might have a capability. But hiring isn’t about possibility. It’s about evidence of capability. Saying you’ve led a team isn’t the same as doing it well. Collecting or observing actual examples of behaviour allows you to evaluate someone’s true competence at a claimed skill. 

Some platforms try to infer proficiency, too, but this is still inference, not measurement. No matter how smart the model, it’s still drawing conclusions from indirect data.

By contrast, validated assessments like structured interviews, simulations, and psychometric tools are designed to measure. They observe behaviour against defined criteria, use consistent scoring frameworks (like Behaviourally Anchored Rating Scales, or BARS), and provide a transparent, defensible basis for decision-making. In doing this, the level or proficiency of a skill can be placed on a properly calibrated scale. 

But here’s the thing: we don’t have to choose one over the other.

A Smarter Way Forward: The Hybrid Model

The real opportunity lies in combining the rigour of measurement with the scalability of inference.

Start with measurement
Define the skills that matter. Use structured tools to capture behavioural evidence. Set a clear standard for what good looks like. For example, define Behaviourally Anchored Rating Scales (BARS) when assessing interviews for skills. Using a framework like Sapia.ai’s Competency Framework is critical for defining what you want to measure. 

Layer in inference
Apply AI to scale scoring, add contextual nuance, and detect deeper patterns that human assessors might miss, especially when reviewing large volumes of data.

Anchor the whole system in transparency and validation
Ensure people understand how inferences are made by providing clear explanations. Continuously test for fairness. Keep human oversight in the loop, especially where the stakes are high. More information on ensuring AI systems are transparent can be found in this paper.

This hybrid model respects the strengths and limits of both approaches. It recognises that AI can’t replace human judgement, but it can enhance it. That inference can extend reach, but only measurement can give you higher confidence in the results.

The Bottom Line

Inference can support and guide, but only measurement can prove. And when people’s futures are on the line, proof should always win.

References

Ahuja, A. (2024). LinkedIn profile analysis reveals gender-based differences in self-presentation among Indian MBA graduates. Journal of Business and Psychology.

 

Read Online
Blog

Making Healthcare Hiring Human with Ethical AI

Hiring for care is unlike any other sector. Recruiters are looking for people who can bring empathy, resilience, and energy to the most demanding human roles. Whether it’s dental care, mental health, or aged care, new hires are charged with looking after others when they’re most vulnerable. The stakes are high. 

Hiring for care is exactly where leveraging ethical AI can make the biggest impact.

Hiring for the traits that matter

The best carers don’t always have the best CVs.

That’s why our chat-based AI interview doesn’t screen for qualifications. It screens for the the skills that matter when caring for others. The traits that define a brilliant care worker, things like:

Empathy, Self-awareness, Accountability, Teamwork, and Energy. 

The best way to uncover these traits is through structured behavioural science, delivered through an experience that allows candidates to open up. Giving candidates space to give real-life, open-text answers. With no time pressure or video stress. Then, our AI picks up the signals that matter, free from any demographic data or bias-inducing signals.

Candidates’ answers to our structured interview questions aren’t simply ticking boxes. They’re a window into how someone shows up under pressure. And they’re helping leading care organisations hire people who belong in care and those who stay.

Inclusion, built in

Inclusivity should be a core foundation of any talent assessment, and it’s a fundamental requirement for hirers in the care industry. 

When healthcare hirers use chat-based AI interviews, designed to be inclusive for all groups, candidates complete their interviews when and where they choose, without the bias traps of face-to-face or phone screening. There are no accents to judge, no assumptions, just their words and their story.

And it works:

  • 91.8% of carer candidates complete their interviews
  • Carer candidates report 9/10 Candidate Satisfaction with their interview experience 
  • 80% of candidates would recommend others to apply 
  • Every candidate receives personalised feedback, regardless of the outcome

Drop-offs are reduced, and engagement & employer brand advocacy go up. Building a brand that candidates want to work for includes providing a hiring experience that candidates want to complete. 

Real outcomes in care hiring

Our smart chat already works for some of the most respected names in healthcare and community services. Here’s a sample of the outcomes that are possible by leveraging ethical AI, a validated scientific assessment, wrapped in an experience that candidates love: 

Anglicare – a leading provider of aged care services
  • Time-to-offer dropped from 40+ days to just 14
  • Candidate pool grew by 30%
  • Turnover dropped by 63%
Abano Healthcare – Australasia’s largest dental support organisation
  • 1,213 recruiter hours saved  in the first month (67 hours per individual hiring team member) 
  • $25,000 saved in screening and interviewing time
Berry Street – a not for profit family & child services organisation
  • Time-to-hire down from 22 to 7 days
  • 95.4% of candidates completed their chat interviews

A smarter way to hire

The case study tells the full story of how Sapia.ai helped Anglicare, Abano Healthcare, and Berry Street transform their hiring processes by scaling up, reducing burnout, and hiring with heart. 

Download it here:

Read Online