Back

Recruitment is NOT a cost center – here’s how to start proving it in 2024

Recruitment is not a cost center | Sapia Ai recruitment software
It’s an understatement to say that recruiters and talent acquisition managers have had it tough over the last four-odd years. The pressures have compounded like a line of falling dominoes: First it was the COVID-19 pandemic; then came the mass talent migration; then the advent of new concepts like ‘quiet quitting’ and ‘acting your wage’, which, like them or not, seem to be the manifestations of a tired and existentially anxious workforce.

Now, in 2024, it’s likely that we’ll have to contend with a global recession.

Hiring is tougher. Candidates are wary and they expect more. Duh.

So do companies and their CEOs. However – and somewhat counter-productively – many companies have sought to cut recruitment budgets, lay off recruiters and talent acquisition managers en masse, and deprioritize long-term recruitment marketing strategies. We’re facing troubled times, and recruitment (and perhaps HR, more generally) is being treated as a cost center.

This misunderstanding of HR as a money sink is nothing new. It happens during every trough in the market. But, if we don’t make efforts to change this perception, 2024 will be a particularly painful valley to climb out of.

Why is recruitment treated as a cost center?

CEOs have been keen on talent strategy for years, but are struggling to quantify the effects of recruitment and talent acquisition activities. They cannot see the A to B journey, the action and its result. When the market is good, talent is in abundance, and you’re hiring effectively, nobody cares. But when times are hard, nebulous processes are put under harsh light.

Relatedly, recruitment and talent acquisition leaders are struggling to prove that the outcomes of their work are driving revenue. This is primarily an issue of data capture and analysis, in our experience: When companies come to us to help with hiring quality talent, the number one issue they have is to do with metrics and KPIs. Most do not know how to reliably measure quality of hire, nor time-to-hire, nor the effectiveness of their recruitment marketing channels. Many know that their processes are plagued with inefficiencies, but are not sure how to go about fixing them.

(To be clear, totally understandable. This stuff is hard.)

The big and unmanageable HR tech stack

Where recruitment is concerned, a HR tech stack tends to look like this: an unwieldy ATS, often coupled with a conversational AI or scheduling tool.

These technologies cost big money. As a result, the question CFOs and CEOs will be constantly asking of HR is this: Is it adding real value? Can you prove it? Or are we simply stuck to a system that tackles old problems with insufficient solutions?

The bottom line is this: Enterprise companies are overstacked, overworked, and need to adopt different solutions to old problems. It doesn’t mean less tech, necessarily, although it can; it means the right tech.

Focus first on areas of lost productivity.

Easier, perhaps, than it sounds. It’s always better to iterate than to completely restructure your hiring function. So get your team together and examine your processes. How much time is spent:

  1. Sourcing and reviewing candidates (including, importantly, reading through resumes and cover letters)?
  2. Screening?
  3. Scheduling, rescheduling, and conducting interviews?
  4. Organizing and corralling hiring managers?
  5. Gathering, collating, and providing feedback to candidates?
  6. Communicating with candidates, more generally?
  7. Onboarding?

Ideally, you have baseline data in your ATS to help you arrive at some indicative numbers. But let’s assume that you don’t: calculating rough person-hours is enough to see where time may be spent more effectively.

In our experience, sourcing and screening are the stages in which quick wins might be gotten. As time-honored research (and our Smart Interviewer product) shows, resumes and cover letters are not useful indicators of candidate quality or potential. They can be easily falsified. What’s more, Sapia and Aptitude research from 2022 discovered that 22% of candidates drop out at the application stage and 24% at the screening stage.

The biggest companies are starting to focus more on this. According to the Wall Street Journal, employers like Google, Delta and IBM are combatting the tight labor market by easing strict needs for college degrees.

Interviews are another huge cause of inefficiency. Structured interviews are the best explainer (at 26%) of an employee’s performance, but many companies allow recruiters and hiring managers to conduct interviews haphazardly, causing a misidentification and loss of talent that can be hard (if not impossible) to measure. If you’re interviewing badly, how can you know if you’re capable of finding good candidates? What’s the associated cost of such a problem?

It’s no surprise, then, that according to our research, 50% of companies say they’ve lost talent due to the way they interview. Big costs involved there.

Next, focus on measurable metrics

Don’t worry: We’re not going to lay out a massive and exhaustive list of metrics you should be tracking. Not feasible; you’re overworked as it is.
Instead, we’ll prescribe three good places to start, including links to helpful blog posts explaining how you measure them effectively:

  1. Candidate abandonment rate
  2. Candidate source attribution (or where candidates actually come from)
  3. Candidate experience baseline

Each of these metrics can help you improve efficiencies, and in turn, start to prove that your recruitment function is having a positive effect on business outcomes.

Layer on tech that can help you drastically improve hiring efficiency, while giving you time to focus on big picture stuff

At a certain point, we must realize that force-multiplying technology is the only way to win in the unfolding ‘now’ of work. We’re spending way too much time with processes that can be repeated and automated – often out of some sense of duty to uphold 1:1 human connection (as if technology completely removes that, which it doesn’t).

And, because we do this, we weaken our position at an executive level: CEOs care about what is scalable, and the average recruitment function, traditionally speaking, does not.

In a recent episode of our Pink Squirrels! podcast, Sapia CEO and founder Barb Hyman had a chat with expert HR change management leader, Kyle Lagunas, about this very topic.

The one foolproof way to elevate recruitment in your company

We exist to help you hire better, faster, and with fewer headaches. Our Smart Interviewer takes care of the scheduling, interviewing, and assessment stages of your process – saving upwards of 2,000 recruitment hours (av.) per month, and enabling you to offer jobs to candidates within 24 hours of application.

It’s delivered in a chat-based format (hello, Gen Z!), and candidate responses are assessed according to science-backed personality models. This means you can be sure you’re getting top talent, and you can prove it with measurable, repeatable data.

That’s not all: Our tech is blind, which means it natively disrupts bias and maximizes the size of your talent pool. Everyone gets an interview, and everyone gets personalized coaching tips whether or not they get the job. Our application completion rate, for all customers, sits at around 85% on average; our candidate satisfaction rate is well over 90%!

(And, if you need a second stage interview, you can use our Video Interview tool.)

Everything you do with our platform is pulled through to comprehensive data dashboards, allowing you to see hiring efficiency, quality, time, diversity, and other metrics. CEOs love this kind of transparency.

There you go: time saved NOT having to screen, review resumes and cover letters, compile candidate feedback, communicate with candidates, or improve hiring manager interview techniques.

When you’re saving that much time and money, your recruitment (or HR) function has more bandwidth to focus on long-term talent acquisition and people initiatives.

Don’t struggle in 2024 – speak to our team today about how we can solve your hiring challenges.


Blog

Neuroinclusion by design. Not by exception.

Why neuroinclusion can’t be a retrofit and how Sapia.ai is building a better experience for every candidate.

In the past, if you were neurodivergent and applying for a job, you were often asked to disclose your diagnosis to get a basic accommodation – extra time on a test, maybe the option to skip a task. That disclosure often came with risk: of judgment, of stigma, or just being seen as different.

This wasn’t inclusion. It was bureaucracy. And it made neurodiverse candidates carry the burden of fitting in.

We’ve come a long way, but we’re not there yet.

Shifting from retrofits to inclusive-by-design

Over the last two decades, hiring practices have slowly moved away from reactive accommodations toward proactive, human-centric design. Leading employers began experimenting with:

  • Sharing interview questions in advance

  • Replacing group exercises with structured simulations

  • Offering a variety of assessment formats

  • Co-designing assessments with neurodiverse candidates

But even these advances have often been limited in scope, applied to special hiring programs or specific roles. Neurodiverse talent still encounters systems built for neurotypical profiles, with limited flexibility and a heavy dose of social performance pressure.

Hiring needs to look different.

Insight 1: The next frontier of hiring equity is universal design

Truly inclusive hiring doesn’t rely on diagnosis or disclosure. It doesn’t just give a select few special treatment. It’s about removing friction for everyone, especially those who’ve historically been excluded.

That’s why Sapia.ai was built with universal design principles from day one.

Here’s what that looks like in practice:

  • No time limits — Candidates answer at their own pace
  • No pressure to perform — It’s a conversation, not a spotlight
  • No video, no group tasks — Just structured, 1:1 chat-based interviews
  • Built-in coaching — Everyone gets personalised feedback

It’s not a workaround. It’s a rework.

Insight 2: Not all “friendly” methods are inclusive

We tend to assume that social or “casual” interview formats make people comfortable. But for many neurodiverse individuals, icebreakers, group exercises, and informal chats are the problem, not the solution.

When we asked 6,000 neurodiverse candidates about their experience using Sapia.ai’s chat-based interview, they told us:

“It felt very 1:1 and trustworthy… I had time to fully think about my answers.”

“It was less anxiety-inducing than video interviews.”

“I like that all applicants get initial interviews which ensures an unbiased and fair way to weigh-up candidates.”

Insight 3: Prediction ≠ Inclusion

Some AI systems claim to infer skills or fit from resumes or behavioural data. But if the training data is biased or the experience itself is exclusionary, you’re just replicating the same inequity with more speed and scale.

Inclusion means seeing people for who they are, not who they resemble in your data set.

At Sapia.ai, every interaction is transparent, explainable, and scientifically validated. We use structured, fair assessments that work for all brains, not just neurotypical ones.

Where to from here?

Neurodiversity is rising in both awareness and representation. However, inclusion won’t scale unless the systems behind hiring change as well.

That’s why we built a platform that:

  • Doesn’t rely on disclosure

  • Removes ambiguity and pressure

  • Creates space for everyone to shine

  • Measures what matters, fairly

Sapia.ai is already powering inclusive, structured, and scalable hiring for global employers like BT Group, Costa Coffee and Concentrix. Want to see how your hiring process can be more inclusive for neurodivergent individuals? Let’s chat. 

Read Online
Blog

Skills Measurement vs Skills Inference – What’s the Difference and Why Does It Matter?

There’s growing interest in AI-driven tools that infer skills from CVs, LinkedIn profiles, and other passive data sources. These systems claim to map someone’s capability based on the words they use, the jobs they’ve held, and patterns derived from millions of similar profiles. In theory, it’s efficient. But when inference becomes the primary basis for hiring or promotion, we need to scrutinise what’s actually being measured and what’s not.

Let’s be clear: the technology isn’t the problem. Modern inference engines use advanced natural language processing, embeddings, and knowledge graphs. The science behind them is genuinely impressive. And when they’re used alongside richer sources of data, such as internal project contributions, validated assessments, or behavioural evidence, they can offer valuable insight for workforce planning and development.

But we need to separate the two ideas:

  • Skills Measurement: Directly observing or quantifying a skill based on evidence of actual performance. 
  • Skills Inference: Estimating the likelihood that someone has a skill, based on indirect signals or patterns in their data. 

The risk lies in conflating the two.

The Problem Isn’t Inference of Skills. It’s the Data Feeding It

CVs and LinkedIn profiles are riddled with bias, inconsistency, and omission. They’re self-authored, unverified, and often written strategically – for example, to enhance certain experiences or downplay others in response to a job ad. 

And different groups represent themselves in different ways. Ahuja (2024) showed, for example, that male MBA graduates in India tend to self-promote more than their female peers. Something as simple as a longer LinkedIn ‘About’ section becomes a proxy for perceived competence.

Job titles are vague. Skill descriptions vary. Proficiency is rarely signposted. Even where systems draw on internal performance data, the quality is often questionable. Ratings tend to cluster (remember the year everyone got a ‘3’ at your org?) and can often reflect manager bias or company culture more than actual output.

Sophisticated ≠ Objective

The most advanced skill inference platforms use layered data: open web sources like job ads and bios, public databases like O*NET and ESCO, internal frameworks, even anonymised behavioural signals from platform users. This breadth gives a more complete picture, and the models powering it are undeniably sophisticated.

But sophistication doesn’t equal accuracy.

These systems rely heavily on proxies and correlations, rather than observed behaviour. They estimate presence, not proficiency. And when used in high-stakes decisions, that distinction matters.

Transparency (or Lack Thereof)

In many inference systems, it’s hard to trace where a skill came from. Was it picked up from a keyword? Assumed from a job title? Correlated with others in similar roles? The logic is rarely visible, and that’s a problem, especially when decisions based on these inferences affect access to jobs, development, or promotion.

Presence ≠ Proficiency

Inferred skills suggest someone might have a capability. But hiring isn’t about possibility. It’s about evidence of capability. Saying you’ve led a team isn’t the same as doing it well. Collecting or observing actual examples of behaviour allows you to evaluate someone’s true competence at a claimed skill. 

Some platforms try to infer proficiency, too, but this is still inference, not measurement. No matter how smart the model, it’s still drawing conclusions from indirect data.

By contrast, validated assessments like structured interviews, simulations, and psychometric tools are designed to measure. They observe behaviour against defined criteria, use consistent scoring frameworks (like Behaviourally Anchored Rating Scales, or BARS), and provide a transparent, defensible basis for decision-making. In doing this, the level or proficiency of a skill can be placed on a properly calibrated scale. 

But here’s the thing: we don’t have to choose one over the other.

A Smarter Way Forward: The Hybrid Model

The real opportunity lies in combining the rigour of measurement with the scalability of inference.

Start with measurement
Define the skills that matter. Use structured tools to capture behavioural evidence. Set a clear standard for what good looks like. For example, define Behaviourally Anchored Rating Scales (BARS) when assessing interviews for skills. Using a framework like Sapia.ai’s Competency Framework is critical for defining what you want to measure. 

Layer in inference
Apply AI to scale scoring, add contextual nuance, and detect deeper patterns that human assessors might miss, especially when reviewing large volumes of data.

Anchor the whole system in transparency and validation
Ensure people understand how inferences are made by providing clear explanations. Continuously test for fairness. Keep human oversight in the loop, especially where the stakes are high. More information on ensuring AI systems are transparent can be found in this paper.

This hybrid model respects the strengths and limits of both approaches. It recognises that AI can’t replace human judgement, but it can enhance it. That inference can extend reach, but only measurement can give you higher confidence in the results.

The Bottom Line

Inference can support and guide, but only measurement can prove. And when people’s futures are on the line, proof should always win.

References

Ahuja, A. (2024). LinkedIn profile analysis reveals gender-based differences in self-presentation among Indian MBA graduates. Journal of Business and Psychology.

 

Read Online
Blog

Making Healthcare Hiring Human with Ethical AI

Hiring for care is unlike any other sector. Recruiters are looking for people who can bring empathy, resilience, and energy to the most demanding human roles. Whether it’s dental care, mental health, or aged care, new hires are charged with looking after others when they’re most vulnerable. The stakes are high. 

Hiring for care is exactly where leveraging ethical AI can make the biggest impact.

Hiring for the traits that matter

The best carers don’t always have the best CVs.

That’s why our chat-based AI interview doesn’t screen for qualifications. It screens for the the skills that matter when caring for others. The traits that define a brilliant care worker, things like:

Empathy, Self-awareness, Accountability, Teamwork, and Energy. 

The best way to uncover these traits is through structured behavioural science, delivered through an experience that allows candidates to open up. Giving candidates space to give real-life, open-text answers. With no time pressure or video stress. Then, our AI picks up the signals that matter, free from any demographic data or bias-inducing signals.

Candidates’ answers to our structured interview questions aren’t simply ticking boxes. They’re a window into how someone shows up under pressure. And they’re helping leading care organisations hire people who belong in care and those who stay.

Inclusion, built in

Inclusivity should be a core foundation of any talent assessment, and it’s a fundamental requirement for hirers in the care industry. 

When healthcare hirers use chat-based AI interviews, designed to be inclusive for all groups, candidates complete their interviews when and where they choose, without the bias traps of face-to-face or phone screening. There are no accents to judge, no assumptions, just their words and their story.

And it works:

  • 91.8% of carer candidates complete their interviews
  • Carer candidates report 9/10 Candidate Satisfaction with their interview experience 
  • 80% of candidates would recommend others to apply 
  • Every candidate receives personalised feedback, regardless of the outcome

Drop-offs are reduced, and engagement & employer brand advocacy go up. Building a brand that candidates want to work for includes providing a hiring experience that candidates want to complete. 

Real outcomes in care hiring

Our smart chat already works for some of the most respected names in healthcare and community services. Here’s a sample of the outcomes that are possible by leveraging ethical AI, a validated scientific assessment, wrapped in an experience that candidates love: 

Anglicare – a leading provider of aged care services
  • Time-to-offer dropped from 40+ days to just 14
  • Candidate pool grew by 30%
  • Turnover dropped by 63%
Abano Healthcare – Australasia’s largest dental support organisation
  • 1,213 recruiter hours saved  in the first month (67 hours per individual hiring team member) 
  • $25,000 saved in screening and interviewing time
Berry Street – a not for profit family & child services organisation
  • Time-to-hire down from 22 to 7 days
  • 95.4% of candidates completed their chat interviews

A smarter way to hire

The case study tells the full story of how Sapia.ai helped Anglicare, Abano Healthcare, and Berry Street transform their hiring processes by scaling up, reducing burnout, and hiring with heart. 

Download it here:

Read Online