Before COVID, the conversations I was having with HR executives were about how Sapia might help them with the volume of candidates they were receiving for job openings. For every job posted there were often over a thousand candidates, and it doesn’t take much of a stretch of the imagination to understand how overwhelmed many big organisations were. Our Ai was seen as the solution to automate dealing with candidate volume in a way that found the best people, but also touched base with everyone who applied as part of their brand building. In a nutshell, before the pandemic, efficiency was the key driver in looking for automated hiring solutions like ours.
Now that we’re emerging from the disruption of COVID, no one is talking to me about needing help with the volume of candidates they receive. In fact, they are asking how we might help them get any candidates in the first place! All around the globe, and across multiple industries, there is a need for candidates. It’s certainly been an abrupt change that has left many scratching their heads, but there is almost no time to wrap your head around it if you want to stay in the game. This is a new war for talent unlike any we’ve seen before, and candidates have the upper hand. It’s created a need for a solution to solve two things: firstly, to identify skills in candidates that traditional ways of hiring failed to identify (I call this cohort “undiscovered talent”) and a strong candidate experience (you are the one being interviewed from the moment they hit “apply”).
I thought it was worth looking at how the “war of talent” has evolved since it was first coined by Steven Hankin at McKinsey & Company in 1997. At that time there was a shift in the way that companies valued their talent, and it became seen as important to attract the best in order to have a successful organisation. It’s hard to think about this now, but at that time the whole idea of cultivating company cultures that aimed to elevate and value employees was new. At this stage though the “war” was largely for executive talent with recruiters focusing on building their brand by poaching star C-Suite talent off competitors, wooing them with big sign-up bonuses and lavish overtures like unexpected gifts and trips.
As tech companies started to become the big players in the market, the focus turned from business acumen to the need for the best digital and technical talent. Recruiting became less about material perks (though many engineers still commanded high salaries) but also about giving talent things they wanted besides just money. Flexibility, free lunches, unlimited holidays and creating cultures that were about “working hard and having fun” were how the war for technical talent was won. This was really a time of culture wars between companies, but also meant that many companies hired only for culture-fit. This resulted in fairly homogenous teams that were largely white male techbros, and eventually many large tech companies were called out on it. Beyond tech, corporates were also waking up to the fact that they had some serious diversity issues that needed to be addressed. This led to a new war. The war for diverse talent.
Pre-COVID, hiring more diversely was a strong focus for companies to find the best talent. We all know that diverse teams result in better business outcomes and anyone who had a “pale, male and stale” executive team was seen as minted in the past. Coupled with Black Lives Matter, which became a global movement to address racial inequality from the C-suite down, finding more diverse talent through reducing bias in hiring, was where the war was being fought. This is not a won battle by the way, and remains a large focus for many companies that we work with and help. Importantly, finding diverse talent is still a key part of this new and emerging next phase of the “war on talent” … the one where workers have the upper hand. The one where candidates are in short supply, and people want jobs that suit them just as much as whether they are seen as just suited to the job.
Recruiters have been forced to look at people differently – and this is not a bad thing. Factors like age, ethnicity, education, gender and even past experience that obscured our understanding of someone’s ability to do a job have all been cancelled as qualifying factors. Soft skills, or human skills, have become the focus on what we need to understand in order to assess someone’s suitability to do a job. Are they a team player? Do they like to problem solve? How aligned are they to our company values? Are they self-aware and in touch with their emotions? Can they put stress aside to achieve outcomes?
“What we recruit for” has significantly shifted for many already, but there is still some catching up to do on the “how we recruit”. To be blunt, CV’s and cover letters begging recruiters to “pick me!” serve no purpose in this new battle. They ask too much of candidates from the outset, serve no valuable purpose in the information they provide, confirm our biases and just create work on the HR manager’s side.
We need to walk in a candidate’s shoes and make sure that our recruiting process puts them first, treats them fairly and without bias, meets them where they are at, and is both friendly and informative. And, HR teams need to do this all while working efficiently and fast. Speed is crucial when talent is in short supply.
Impossible? No, not at all. Recruiters need to understand that Ai platforms like ours exist to solve all these problems. We’re not a “technical” solution, but a human one, in that we can accurately identify soft skills immediately and engage with candidates in a one-on-one way, at scale.
You cannot win this war on talent without chat-driven Ai technology. Technology like ours is the only way you can quickly understand the real human skills that every candidate brings to the table, without dismissing anyone upfront.
I can’t help but think that these issues we’re facing as recruiters and HR managers right now, where workers have the upper hand, while unchartered territory, will only serve our industry for the better. It’s a chance to give everyone a fair go, truly understand them, treat them with the dignity they deserve … and still hire better teams.
Maybe it’s not a battle after all. Maybe it’s a win-win.
___________________________________________
For more on how to improve candidate experience using recruitment automation, we have a great eBook on candidate experience.
A new study has just confirmed what many in HR have long suspected: traditional psychometric tests are no longer the gold standard for hiring.
Published in Frontiers in Psychology, the research compared AI-powered, chat-based interviews to traditional assessments, finding that structured, conversational AI interviews significantly reduce social desirability bias, deliver a better candidate experience, and offer a fairer path to talent discovery.
We’ve always believed hiring should be about understanding people and their potential, rather than reducing them to static scores. This latest research validates that approach, signalling to employers what modern, fair and inclusive hiring should look like.
While used for many decades in the absence of a more candidate-first approach, psychometric testing has some fatal flaws.
For starters, these tests rely heavily on self-reporting. Candidates are expected to assess their own traits. Could you truly and honestly rate how conscientious you are, how well you manage stress, or how likely you are to follow rules? Human beings are nuanced, and in high-stakes situations like job applications, most people are answering to impress, which can lead to less-than-honest self-evaluations.
This is known as social desirability bias: a tendency to respond in ways that are perceived as more favourable or acceptable, even if they don’t reflect reality. In other words, traditional assessments often capture a version of the candidate that’s curated for the test, not the person who will show up to work.
Worse still, these assessments can feel cold, transactional, even intimidating. They do little to surface communication skills, adaptability, or real-world problem solving, the things that make someone great at a job. And for many candidates, especially those from underrepresented backgrounds, the format itself can feel exclusionary.
Enter conversational AI.
Organisations have been using chat-based interviews to assess talent since before 2018, and they offer a distinctly different approach.
Rather than asking candidates to rate themselves on abstract traits, they invite them into a structured, open-ended conversation. This creates space for candidates to share stories, explain their thinking, and demonstrate how they communicate and solve problems.
The format reduces stress and pressure because it feels more like messaging than testing. Candidates can be more authentic, and their responses have been proven to reveal personality traits, values, and competencies in a context that mirrors honest workplace communication.
Importantly, every candidate receives the same questions, evaluated against the same objective, explainable framework. These interviews are structured by design, evaluated by AI models like Sapia.ai’s InterviewBERT, and built on deep language analysis. That means better data, richer insights, and a process that works at scale without compromising fairness.
The new study, published in Frontiers in Psychology, put AI-powered, chat-based interviews head-to-head with traditional psychometric assessments, and the results were striking.
One of the most significant takeaways was that candidates are less likely to “fake good” in chat interviews. The study found that AI-led conversations reduce social desirability bias, giving a more honest, unfiltered view of how people think and express themselves. That’s because, unlike multiple-choice questionnaires, chat-based assessments don’t offer obvious “right” answers – it’s on the candidate to express themselves authentically and not guess teh answer they think they would be rewarded for.
The research also confirmed what our candidate feedback has shown for years: people actually enjoy this kind of assessment. Participants rated the chat interviews as more engaging, less stressful, and more respectful of their individuality. In a hiring landscape where candidate experience is make-or-break, this matters.
And while traditional psychometric tests still show higher predictive validity in isolated lab conditions, the researchers were clear: real-world hiring decisions can’t be reduced to prediction alone. Fairness, transparency, and experience matter just as much, often more, when building trust and attracting top talent.
Sapia.ai was spotlighted in the study as a leader in this space, with our InterviewBERT model recognised for its ability to interpret candidate responses in a way that’s explainable, responsible, and grounded in science.
Today, hiring has to be about earning trust and empowering candidates to show up as their full selves, and having a voice in the process.
Traditional assessments often strip candidates of agency. They’re asked to conform, perform, and second-guess what the “right” answer might be. Chat-based interviews flip that dynamic. By inviting candidates into an open conversation, they offer something rare in hiring: autonomy. Candidates can tell their story, explain their thinking, and share how they approach real-world challenges, all in their own words.
This signals respect from the employer. It says: We trust you to show us who you are.
Hiring should be a two-way street – a long-held belief we’ve had, now backed by peer-reviewed science. The new research confirms that AI-led interviews can reduce bias, enhance fairness, and give candidates control over how they’re seen and evaluated.
It’s time for a new way to map progress in AI adoption, and pilots are not it.
Over the past year, I’ve been lucky enough to see inside dozens of enterprise AI programs. As a CEO, founder, and recently, judge in the inaugural Australian Financial Review AI Awards.
And here’s what struck me:
Despite the hype, we still don’t have a shared language for AI maturity in business.
Some companies are racing ahead. Others are still building slide decks. But the real issue is that even the orgs that are “doing AI” often don’t know what good looks like.
The most successful AI adoption strategy does not have you buying the hottest Gen AI tool or spinning up a chatbot to solve one use case. What it should do is build organisational capability in AI ethics, AI governance, data, design, and most of all, leadership.
It’s time we introduced a real AI Maturity Model. Not a checklist. A considered progression model. Something that recognises where your organisation is today and what needs to evolve next, safely, responsibly, and strategically.
Here’s an early sketch based on what I’ve seen:
AI is a capability.And like any capability, it needs time, structure, investment, and a map.
If you’re an HR leader, CIO, or enterprise buyer, and you’re trying to separate the real from the theatre, maturity thinking is your edge.
Let’s stop asking, “Who’s using AI?”
And start asking: “How mature is our AI practice and what’s the next step?”
I’m working on a more complete model now, based on what I’ve seen in Australia, the UK, and across our customer base. If you’re thinking about this too, I’d love to hear from you.
For too long, AI in hiring has been a black box. It promises speed, fairness, and efficiency, but rarely shows its work.
That era is ending.
“AI hiring should never feel like a mystery. Transparency builds trust, and trust drives adoption.”
At Sapia.ai, we’ve always worked to provide transparency to our customers. Whether with explainable scores, understandable AI models, or by sharing ROI data regularly, it’s a founding principle on which we build all of our products.
Now, with Discover Insights, transparency is embedded into our user experience. And it’s giving TA leaders the clarity to lead with confidence.
Transparency Is the New Talent Advantage
Candidates expect fairness. Executives demand ROI. Boards want compliance. Transparency delivers all three.
Even visionary Talent Leaders can find it difficult to move beyond managing processes to driving strategy without the right data. Discover Insights changes that.
“When talent leaders can see what’s working (and why) they can stop defending their strategy and start owning it.”
What it is: The median time between application and hire.
Why it matters: This is your speedometer. A sharp view of how long hiring takes and how that varies by cohort, role, or team helps you identify delays and prove efficiency gains to leadership.
Faster time to hire = faster access to revenue-driving talent.
What it is: Satisfaction scores, brand advocacy measures, and unfiltered candidate comments.
Why it matters: Many platforms track satisfaction. Sapia.ai’s Discover Insights takes it further, measuring whether that satisfaction translates into employer and consumer brand advocacy.
And with verbatim feedback collected at scale, talent leaders don’t have to guess how candidates feel. They can read it, learn from it, and take action.
You don’t just measure experience. You understand it in the candidates’ own words.
What it is: The percentage of candidates who exit the hiring process at different stages, and how to spot why.
Why it matters: Understanding drop-off points lets teams fix friction quickly. Embedding automation early in the funnel reduces recruiter workload and elevates top candidates, getting them talking to your hiring teams faster.
Assessment completion benchmarks in volume hiring range between 60–80%, but with a mobile-first, chat-based format like Sapia.ai’s, clients often exceed that.
Optimising your funnel isn’t about doing more. It’s about doing smarter, with less effort and better outcomes.
What it is: The percentage of completed applications that result in a hire.
Why it matters: This is your funnel efficiency score. A high yield means your sourcing, screening, and selection are aligned. A low one? There’s leakage, misfit, or missed opportunity.
Hiring yield signals funnel health, recruiter performance, and candidate-process fit.
What it is: Insights into how candidate scores are distributed, and whether responses appear copied or AI-generated.
Why it matters: In high-volume hiring, a normal distribution of scores suggests your assessment is calibrated fairly. If it’s skewed too far left or right, it could be too hard or too easy, and that affects trust.
Add in answer originality, and you can track engagement integrity, protecting both your process and your brand.
To effectively lead, you need more than simply tracking; you need insights enabling action.
When you can see how AI impacts every part of your hiring, from recruiter productivity to candidate sentiment to untapped talent, you lead with insight, not assumption. And that’s how TA earns a seat at the strategy table.