Candidate experience: Everybody’s talking about it, few companies are actively investing in it.
According to a Sapia-sponsored Aptitude Research report from earlier this year, 68% of companies admit they have no plans to address the interview portion of their candidate experience throughout 2022 and 2023. Despite this, 50% of these companies know they’re losing talent due to their application and interview processes. What’s more, according to Forbes, companies that prioritize candidate experience can see their average quality-of-hire improve by 70%.
Why the unwillingness to address such an important facet of recruitment? In most cases, the teams responsible for enacting change to candidate experience are steeped in the everyday throes of talent acquisition, and don’t have time right now to examine their processes. Statistically speaking, this is probably where you’re at. Totally understandable; the 2023 labor market is tough. If your house is on fire, you’re probably not focussed on how well you treat the visitors at your doorstep.
Recently, on our Pink Squirrels! podcast, we sat down with Lars van Wieren, CEO at Starred, a candidate experience measurement tool. Lars offered some practical tips on getting started with candidate experience: Benchmarking it, measuring it at different stages of the process, and setting your business up to review and act on the findings.
As the saying goes, what gets measured, gets managed. Lars recommends starting with a basic benchmark for your candidate experience. This need not be difficult, and you don’t necessarily need a fancy candidate experience tool to start gathering these data.
Simply ask your candidates: How likely are you to recommend our company to a friend or colleague? This is, in essence, a Net Performer Score (NPS) question, and the scale (1 to 10) should reflect that.
Ideally, you should be gathering feedback on your candidate experience at each stage of the application process, but to begin with, ask the question at the very end. And to get the best, least-biased data, you need to ask all applicants whether or not they’ve been shortlisted or hired – if you only ask those who have been shortlisted, or the few people who have been successful, you’re likely to get magnanimous results that don’t reflect your true candidate experience.
The NPS tracking question is easily configurable and embeddable into automated emails, meaning it can be set up through your ATS with little additional work.
When you begin to analyze the data, keep things simple: Dump the data into a spreadsheet, and look at your average numbers. If your score is below 0, you’ve got work to do – if it’s 0 to +30, you’re doing well. 30+ and over, well done!
(If you’re reading this, it’s probably not likely that you’ll get a 30+ score on the first go-round. That’s okay – the goal is to find out how much work you’ve got to do.)
The benefit of benchmarking NPS is that it gives your business a single, easy-to-understand proxy for the health of your candidate experience. Once you’ve got the number, you can start to make small changes to your application experience and see how that affects the overall number.
For example, you might consider making the following changes to improve your candidate experience:
At the same time, you might consider looking at your candidate abandonment rate – we’ve got a post on measuring and improving it here. Candidate experience scores and abandonment rates are almost always linked. Improve one, you improve the other.
Our joint report with Aptitude Research uncovered some interesting data on the importance of two-way feedback between candidates and employers.
Gathering and acting on mutual feedback:
Feedback is critical. And, to make it as accurate and indicative as possible, your feedback should ideally be gathered at each stage of the application process: Application, screening, interviewing, assessment, offer, and rejection.
By doing this, you’ll know exactly where your candidate experience is lacking – and you can make fast, effective changes.
Multi-step candidate experience feedback may not be easy to do with your current setup, but it is relatively simple to configure if your ATS/chosen software solution has the capability.
Generally speaking, the task of improving candidate experience is that of your entire talent acquisition or recruitment team. But it’s a good idea to appoint an internal candidate experience champion – someone who is responsible for collating the benchmark data and regularly reporting on it.
What’s the reporting cadence? Depends on the amount of applications you have, and the length of your application process. A monthly score update check-in works best for most. Monthly measurement will likely give you an insightful trendline.
While the task of improving candidate experience is never done, it needn’t require an overhaul to your entire recruitment business. Start small, make iterative improvements over time, and focus on making at least one more candidate smile.
Retail leaders have embraced AI to improve supply chains, automate checkout, and enhance customer experience. But what about finding the people who deliver that customer experience?
AI brings incredible possibilities to supercharge how retailers hire, develop, and retain talent.
At Sapia.ai, we helped iconic retailers like Woolworths, Starbucks, Holland & Barrett, and David Jones reimagine hiring from the ground up – replacing resumes, ghosting, and gut feel with structured, ethical AI that delivers performance and fairness at scale.
The Retail Problem: Volume, Turnover, and Ghosting
Retail is high volume. It’s high churn. And it’s high stakes for candidate experience:
And yet, most hiring still relies on broken tools: resumes, forms, manual processes, and outdated systems.
Sapia.ai: The AI-Native Hiring Engine Built for Retail
Our platform automates the entire “apply to decide” journey, leveraging AI & automation to streamline the hiring process & bring intelligence into retail hiring.
Smart Interviewer™: Mobile-first, chat-based, structured interviews for a holistic candidate assessment.
Live Interview™: AI-driven bulk interview scheduling without calendar chaos.
InterviewAssist™: Instant interview guide generation.
Discover Insights: Embedded analytics to track hiring health in real-time.
Phai: GenAI coach for career and leadership potential.
Unlike resume parsing or generic chatbots, Sapia.ai assesses soft skills, communication, and culture fit using natural language processing and validated psychometrics. It’s ethical AI built in, not bolted on.
From Application to Interview in Under 24 Hours
Candidates don’t want to wait. They don’t want to be ghosted. And they don’t want resumes to define them.
> 80% of Sapia.ai chat interviews are completed in under 24 hours.
We see consistently high completion across categories: grocery, merchandising, home improvement, and luxury retail.
“It was fast, fair, and I actually got feedback. That never happens.” – Retail Candidate Feedback
Real Impact, Across Every Retail Category
Sapia.ai powers hiring for millions of candidates across diverse retail environments:
Impact of Sapia.ai on Retail Hiring in 2024 | |||
Category | Hours Saved | FTEs Saved | Cost Saved |
Grocery | 272k | 131 | $6.5m |
General Merchandise | 193k | 93 | $4.6m |
Specialty Retail | 133k | 64 | $3.2m |
Home Improvements | 103k | 50 | $2.5m |
Merchandising | 22k | 11 | $0.5m |
Luxury | 9k | 4 | $0.2m |
The savings created by intelligent, AI-native automation have unlocked team capacity, impacted retailers’ P&L, and improved store readiness.
Speed That Delivers Real ROI
Every candidate gets interviewed instantly. No waiting. No bias. Just fast, fair, data-backed decisions. This generates real impact for retailers who previously relied on slow, outdated processes to handle thousands of applicants.
DEI by Design, Not by Mandate
With Sapia.ai:
DEI Fairness Scores (based on actual hiring data):
Gender: 1.03 (vs customer baseline of 1.01)
Ethnicity: 1.15 (vs customer baseline of 0.74)
Why? Because ethical AI removes what humans can’t unlearn: bias. With a candidate experience that is inclusive by design, retailers can ensure fairness in screening, and measure it in hiring.
Candidate Experience = Brand Experience
Retail candidates are your customers. And the experience you give them matters. We have built a brand advocacy engine that delights candidates and gives you the data to prove it.
Responsible, Explainable AI Built for Retail
Not all AI is created equally. Since 2018, Sapia.ai has been built on a foundation of responsible AI:
“We can’t go back to life before Sapia.ai. We used to spend half the day reading resumes.”
— Talent Lead, Starbucks AU
What’s at Stake: Time, Brand, and Revenue
Every day spent using outdated hiring methods costs retailers:
With Sapia.ai, you get the productivity unlock retail hiring demands, and the intelligence your talent deserves.
Want to see how fast, fair, and human retail hiring can be?
We can’t hide from reality anymore. Talent needs are shifting overnight, and AI is redefining what it means to work. Traditional talent frameworks are no longer fit for purpose. At Sapia.ai, we believe the future of talent strategy lies in a smarter, fairer, and more adaptive way of defining what great looks like.
Our AI hiring platform is built on the largest proprietary dataset of interview answers globally – we’re a data company at heart, and we’ve seen the power of data-driven people methodology in transforming how organisations hire and retain good talent.
So, when it came to building a new Competency Framework that could be leveraged globally for hiring for any role at any scale, of course, we used a ground-up, data-led methodology that bridges the gap between organisational psychology and AI.
Conventional frameworks are typically crafted through expert interviews and focus groups. While valuable, they tend to be subjective, static, and too slow to keep pace with evolving job demands. As roles become more fluid and technology augments or replaces task-based skills, organisations need a new way to understand the human capabilities that genuinely matter for performance.
We wanted to identify enduring, job-agnostic competencies that reflect what drives success in a modern workplace – capabilities like adaptability, resilience, learning agility, and customer orientation.
(Why competencies and not just skills? Read why here.)
Sapia.ai’s methodology is rooted in the science of human behaviour but powered by cutting-edge AI. We asked two core questions:
The answer to both: yes.
We began with a rich dataset of over 37,000 job descriptions across industries and role types. Using large language models (LLMs) and advanced NLP techniques, we extracted over 200,000 behavioural descriptors. These were distilled down through a four-step process:
This resulted in a refined list of 25 human-centric competencies, each with clear behavioural indicators and practical relevance across a wide range of roles.
Our framework is intelligent, but importantly, it’s adaptive. Organisations can apply this methodology to their own job descriptions to discover custom competencies. This bottom-up, role-data-led approach ensures alignment to real work, not just theoretical models.
And because the framework integrates directly with our AI-powered hiring tools, you get a connected system that brings your talent strategy to life.
Our framework comes to life in the following tools:
Skills alone cannot predict success. Competencies do. As AI continues transforming how we work, Sapia.ai’s Competency Framework offers a scalable, scientific, and fair foundation for hiring and developing the talent of tomorrow.
If you’re a CHRO or Head of Recruitment at an enterprise today, chances are you’ve been inundated with messages about the importance of “skills-based hiring.” LinkedIn’s recent Work Change Report (2025) is full of compelling data: a 140% increase in the rate at which professionals are adding new skills to their profiles since 2022, and a projection that by 2030, 70% of the skills used in most jobs today will have changed.
This is essential reading. But there’s a missed opportunity: the singular focus on “skills” fails to acknowledge the real metric that talent leaders need to be using to future-proof their workforce — competencies.
But skills on their own — even soft ones — are generic, disjointed, and often disconnected from real-world performance. In contrast:
Put simply, competencies answer the all-important question: Can this person apply the right skills, in the right way, at the right time, to deliver results in our environment?
The Work Change Report outlines a future where job titles are fluid, roles evolve quickly, and AI is a constant disruptor. This creates three massive challenges for hiring at scale:
Skills alone don’t tell us whether someone can succeed in a role that will look different 12 months from now. But competencies can. Because they measure not just what a person knows, but how they apply it.
The LinkedIn report highlights a critical insight: organisations now prioritise agility in entry-level hiring. And there’s a good reason for that. With professionals expected to hold twice as many jobs over their careers compared to 15 years ago, adaptability is not just a nice-to-have. It’s core to success.
But you can’t measure agility with a keyword on a CV. You measure it by looking at competencies like:
When you shift the focus away from skills to behavioural competencies that can be defined, observed, and assessed in structured ways, you open yourself up to a much more dynamic and more useful way of managing talent.
To hire effectively at scale, particularly in a technology-driven world of work, talent leaders must shift their lens:
LinkedIn’s data shows that people are learning more skills more quickly than ever. But the real question for talent leaders like you is: Are those skills being applied in ways that drive value? Are we hiring for task proficiency or performance?
The truth is that the organisations that will thrive in an AI-driven, skills-fluid economy aren’t the ones chasing the next hot skill. They’re the ones designing systems to identify, develop and scale competence.
Sapia.ai has developed a comprehensive Competency Framework using a data-driven approach. Download the full paper here.