The Americans with Disabilities Act (ADA) passed in 1990. This year, Australia’s Disability Discrimination Act turned 30. Even after all that time, bias and discrimination against candidates and employees with disabilities continues to be an important topic.
The unemployment rate for those with a disability (10.1%) in 2021 was about twice as high as the rate for those without a disability (5.1%) (U.S. Bureau of Labor Statistics, 2022). Coupled with increased laws and regulations regarding the protection of disabled job applicants and employees (e.g., U.S. EEOC, 2022), it is no surprise that academics, employers, and selection vendors are keen to understand where potential disability bias exists so it can be reduced or, ideally, eliminated.
Traditional face-to-face or video interviews in particular create potential barriers for individuals with disabilities, due to the well-documented stigma and prejudice against those with disabilities (Scior, 2011; Thompson et al., 2011). One study found that fake accountant job applicants that had disclosed a disability were 26% less likely to receive employment interest from the employer than those with no disability. Worse, experienced candidates with disabilities were 34% less likely to receive interest, despite presenting equally high levels of qualifications (Ameri et al., 2015). In addition to the bias held by hiring managers or recruiters, another concern is that certain selection methods create a very poor candidate experience for individuals with disabilities, causing them stress or anxiety and therefore stopping them from putting their best foot forward. For individuals with Autism Spectrum Disorder (ASD) in particular, in-person or video interviews can be very stressful, with less than 10% believing they are given the opportunity to demonstrate their skills and abilities in this process (Cooper & Kennady, 2021).
Stuttering is another form of disability where traditional in-person and video interviews where the candidate has to speak may lead to stress and anxiety (Manning and Beck, 2013). One study found that people who stutter find their stuttering to be a “major handicap” in their working lives and over 70% thought that they had a decreased opportunity to be hired and promoted (Klein & Hood, 2004). Other disabilities, such as dyslexia and other learning and language disabilities may cause candidates to struggle with timed online selection assessments, so it is important to identify and remove these barriers (Hyland & Rutigliano, 2013).
Cooper and Mujtaba (2022) recommend alternative approaches that allow candidates with ASD to showcase their skills without having to verbally communicate them or properly interpret nonverbal cues.
The use of an online, untimed, chat-based interview – that is, our Ai Smart Interviewer – can not only help reduce discrimination against those with disabilities but also create a more positive candidate experience for them.
This format is particularly helpful for individuals with disabilities where traditional in-person interviews, video interviews, or timed assessments may cause stress or discomfort, therefore not allowing the candidate to express themselves freely and adequately demonstrate their skills.
Our Sapia Labs data science team has submitted a paper on reducing bias for people with disabilities to SIOP for 2024.
In the study, the data comes directly from our Smart Interviewer, which, as we said above, is an online untimed chat-based interview platform.
Candidates can give feedback after the interview process, and some candidates include self-report disability conditions in their feedback. While a number of different disabilities were mentioned, we had sufficient sample sizes to examine candidates with autism, dyslexia, and stutter. We compared their machine learning-generated final interview scores and yes/maybe/no hiring recommendations to a randomly sampled, demographically similar group of candidates that did not disclose a disability.
Effect sizes, 4/5ths ratios, and Z-tests revealed no adverse impact against candidates with autism, stutter or dyslexia. Additionally, feedback from these groups tended to indicate the experience was positive and allowed them the opportunity to do their best.
True diversity and inclusion starts with the way you hire. Our Ai Smart Interviewer allows people with disabilities and neurodiversity – real people, with real ambitions – to represent themselves fairly.
It’s been a year of Big Moves at Sapia.ai. From welcoming groundbreaking brands to achieving incredible milestones in our product innovation and scale, we’re pushing the boundaries of what’s possible in hiring.
And we’re just getting started 🚀
Take a look at the highlights of 2024
All-in-one hiring platform
This year, with the addition of Live Interview, we’re proud to say our platform now covers screening, assessing and scheduling.
It’s an all-in-one volume hiring platform that enables our customers to deliver a world-leading experience from application through to offer.
Supercharging hiring efficiency
Every 15 seconds, a candidate is interviewed with Sapia.ai.
This year, we’ve saved hiring managers and recruiters hours of precious time that can now be used for higher-value tasks.
Giving candidates the best experience
Our platform allows candidates to be their best selves, so our customers can find the people that truly belong with them. They’re proud to use a technology that’s changing hiring, for good.
Leading the way in AI for hiring
We’ve continued to push the boundaries in leveraging ethical AI for hiring, with new products on the way for Coaching, Internal Mobility & Interview Builders.
Choosing the right tool for assessing candidates can be challenging. For years, situational judgement tests (SJTs) have been a common choice for evaluating behaviour and decision-making skills. However, they come with limitations that can make the hiring process less effective and less inclusive.
AI-enabled chat-based interviews, such as Sapia.ai, provide organisations with a modern alternative. They focus on understanding candidates as individuals and creating a hiring experience that is both fair and insightful while enabling efficient screening and selection.
This shift raises important questions: Are SJTs still a tool that should be considered for volume hiring? And what do AI assessments offer in comparison?
Traditional SJTs use predefined multiple-choice questions to assess behavioural tendencies and situational knowledge. While useful for screening, these static frameworks lack the flexibility to adapt based on real-world performance data or evolving role requirements.
Once created, SJTs don’t adapt to new data or evolving organisational needs. They rely on fixed scenarios and responses that may not fully reflect the dynamic realities of modern workplaces, and as a result, their relevance may diminish over time.
AI-enabled chat interviews, on the other hand, are inherently adaptive. Using machine learning, these tools can continuously refine their models based on feedback from real-world outcomes such as hiring or turnover data. This ability to evolve ensures the assessments align with organisations’ needs.
One of the main critiques of SJTs is their reliance on multiple-choice responses. While structured and straightforward, these options may not capture the full scope of a candidate’s thinking, communication skills, or problem-solving ability. The approach is often limiting, reducing complex human behaviour to a few predefined choices.
AI-enabled chat interviews work more holistically and dynamically. These tools provide a more complete picture of a person by allowing candidates to answer questions in their own words. Natural language processing (NLP) analyses their responses, offering insights into personality traits, communication skills, and behavioural tendencies. This open-ended format lets candidates express themselves authentically, giving employers a deeper understanding of their potential.
SJTs often include time constraints and rigid formats, which can create pressure for candidates. This is especially true when candidates feel forced to choose options that don’t fully reflect how they would actually behave. The process can feel impersonal, even transactional.
In contrast, chat-based interviews are designed to be conversational and low-pressure for candidates. By removing time limits and adopting a familiar chat interface, these tools help candidates feel more at ease. They also frequently include personalised feedback, turning the assessment into a valuable experience for the candidate, not just the employer.
Traditional SJTs are prone to transparency issues, as candidates can often identify and select the “best practice” answers without revealing their true tendencies. Additionally, static test designs can unintentionally embed bias; due to the nature of the timed test, SJTs have been found to disadvantage some groups.
AI chat interviews, when developed ethically within a framework like Sapia.ai’s FAIR Hiring Framework, eliminate explicit bias by relying solely on the content of a candidate’s responses. Their machine learning models are continuously validated for fairness, ensuring that hiring decisions are free from subjective judgments or irrelevant demographic factors.
Workplaces are constantly changing, and hiring tools need to keep up. SJTs’ fixed nature can make them less effective as roles evolve or organizational priorities shift. They provide a snapshot but not a dynamic view of what’s needed.
AI-enabled chat interviews are built to adapt. With feedback loops and continuous learning, they incorporate real-world hiring outcomes—like retention and performance data—into their models. This ensures that assessments stay relevant and effective over time.
As hiring demands grow more complex, so does the need for tools that can capture the whole person, not just their response to hypothetical scenarios. While SJTs have played an important role in hiring practices, they are increasingly being replaced by tools like AI-enabled chat interviews.
These modern approaches provide richer data, adapt to changing needs, and create a richer and more engaging experience for candidates. Perhaps most importantly, they emphasise fairness and inclusivity, aligning with the growing demand for unbiased hiring practices.
For organisations evaluating their assessment tools, the question isn’t just which method is “better.” Understanding the specific needs of your roles, teams, and candidates will help you choose tools that help you make decisions that are both informed and equitable.
It’s our firm belief that AI should empower, not overshadow, human potential. While AI tools like ChatGPT are brilliant at assisting us with day-to-day tasks and improving our work efficiency, employers are increasingly concerned that they’re holding candidates back from revealing their true, authentic selves in online interviews.
As an assessment technology provider, we are responsible for ensuring the authenticity and integrity of our platform. That’s why we’re thrilled to unveil the latest upgrade to our flagship Chat Interview: the AI-Generated Content Detector 2.0. With groundbreaking accuracy and a candidate-friendly design, this innovation reinforces our mission to build ethical AI for hiring that people love.
Artificially Generated Content (AGC) is content created by an AI tool, such as ChatGPT, Claude, or Pi. We initially rolled out the first version of our AGC detector last year and have continued to improve it as our data set has grown and these AI tools have evolved.
Our updated AGC Detector 2.0 achieves an impressive 98% detection rate for AI-assisted responses, with a false positive rate of just 1%. This gives organisations peace of mind that they’re getting the most authentic assessment of every candidate.
This cutting-edge system builds on Sapia.ai’s proprietary dataset of over 2 billion words, derived from more than 20 million interview question-answer pairs spanning diverse roles, industries, and regions. It’s trained on real-world data collected before and after the release of tools like ChatGPT, ensuring it remains robust and reliable even as AI tools evolve.
Our data shows that around 8% of candidates use tools like GPT-4 to generate responses for three or more interview questions. While these tools may offer a quick way for candidates to complete their interview, they can inadvertently hide a person’s true personality and potential – qualities our customers are most interested in understanding through our platform. In fact, research from Sapia Labs shows that these tools have their own personality traits, which may be quite different from the candidate applying for the role.
When a response is flagged as potentially AI-generated, the system doesn’t disqualify candidates. Instead, a real-time warning pops up, allowing them to revise their answers or submit them as-is. This ensures that candidates are encouraged to present themselves authentically, reflecting their unique communication styles and sharing their genuine experiences.
Responses flagged as AI-generated are highlighted in the candidate’s Talent Insights profile, accessible via Sapia.ai’s Talent Hub or ATS integrations. These insights give hiring teams the transparency to make informed decisions, fostering trust while accelerating hiring timelines.
“Our detection model’s strength lies in its foundation of real-world interview data collected from diverse roles and regions,” says Dr Buddhi Jayatilleke, Sapia.ai’s Chief Data Scientist. This depth of understanding enables the AGC Detector to maintain its industry-leading accuracy – even when candidates subtly modify AI-generated answers to appear more human.
The AGC Detector 2.0 embodies Sapia.ai’s commitment to ethical AI that amplifies human potential. As our CEO Barb Hyman explains:
“The hiring landscape has fundamentally changed since ChatGPT, but our commitment remains clear: AI should amplify human potential, not penalise it. This breakthrough fosters authentic hiring conversations. Our real-time warning system helps candidates make better choices and gives enterprises confidence in their selection decisions.”
The new detector has been rigorously tested on over 25,000 interview responses generated by humans and leading AI models like GPT-4, Claude-3.5, and Llama-3. The results speak for themselves, reinforcing the reliability and fairness of this game-changing technology.
By detecting AI-generated content while allowing candidates to correct their responses, our AGC Detector 2.0 ensures every applicant has the chance to put their best, most authentic foot forward when applying for a role powered by Sapia.ai. For enterprises, it provides confidence in the integrity of their hiring decisions and ensures they’re connecting with real candidates at scale.