To find out how to interpret bias in recruitment, we also have a great eBook on inclusive hiring.
Blind hiring and screening approaches have become significant in recruitment recently and are now considered fair and objective. But what is blind screening? The blind screening involves a situation where the candidate’s personal information such as name, gender, age, or ethnicity is not known to the employer. This is to avoid the bias of conscience and make the process of employment be fair or meritocracy.
One of the AI-enhanced interviewing practices is the AI blind interviews, where an AI interviewer does not know about the personal and demographic details of the candidate. At times, AI blind interviews may also employ voice modulation to guarantee total anonymity. On the other hand, blind resumes are carefully edited versions, where personal information is removed, leaving only skills and experience, often processed through AI interview software.
Blind recruitment is defined as the process of making hiring decisions without regard to personal and demographic details. This approach has gained momentum, and recent blind hiring data indicate that organizations that practice these methods tend to see a rise in diversity as well as a decrease in hiring bias.
In the late 1970s, as the world was changing around them, the Toronto Symphony Orchestra realised they had a problem. Specifically, a white male problem; the profile of nearly every musician.
In what is largely seen as the genesis of the blind interview, in 1980 the orchestra changed their audition process completely. Musicians were placed behind a screen so the auditioning panel couldn’t know the gender, race or age of the musician they were listening to. It’s said they even put down the carpet so the sound of high heels on the stage could not be heard.
All the panel could hear was the music.
Of course, the result of this blind screening was profound. Hiring decisions were made on the quality of the performance only. In just a few short years, the ‘white male’ orchestra was transformed to more equal gender representation with musicians further diversified by their cultural backgrounds.
Not only has the Toronto Symphony Orchestra continued to use blind screening ever since, but it was also quickly adopted by most major orchestras around the world.
Beyond the concert stage, blind screening and blind recruitment practices are used by government, academic and business organisations globally. Because when it comes to identifying the best qualified or best-fit candidates, all you need to hear is their ‘music’.
Are tall people more likely to get higher paid roles? Do the best looking candidates always get the job? Will Michael or Mohamed be the best fit for your team?
While it’s easy to recognise bias in other people, it’s usually harder to admit that we are biased ourselves. That’s why it’s called unconscious bias. It’s something we all have and something we can all be affected by.
Unconscious bias is about making assumptions, stereotyping or a fear of the unknown in how we assess other people. It can be innate or it can be learned and it’s created and reinforced through our personal experiences, our cultural background and environment.
Think of gender bias, ageism, racism or name bias – these are some common biases that need no explanation. However, psychologists and researchers have identified over 150 types of bias that impact the way we form opinions and make judgements about people, often instantly.
In a two year study titled Whitened Résumés: Race and Self-Presentation in the Labor Market published in the Administrative Science Quarterly in 2016, academics from the University of Toronto and Stanford University looked at racial and gender bias during resume screening.
In one US study, they created and sent out resumes for black and Asian candidates for 1,600 advertised entry-level jobs. While some of the resumes included information such as names, colleges, towns and cities that clearly pointed out the applicants’ race or status, others were ‘whitened’, or scrubbed of racial clues.
Amongst many insights, they found that white-sounding names were 75% more likely to get an interview request than identical resumes with Asian names and 50% more likely than black-sounding names. Males were 40% more likely to get an interview request than women.
Still need convincing?
Another 2016 study by The Institute for the Study of Labor (IZA) in Bonn, Germany examined how ethnicity and religion influenced a candidate’s chances of landing an interview. 1500 real employers received otherwise identical applications, complete with a photo, from Sandra Bauer, Meryem Ӧztürk, or Meryem Ӧztürk wearing a headscarf.
These are just two of many research studies that suggest bias and discrimination are rife in the hiring process. In a 2017 UK study, only a third of hiring managers felt confident they were not biased or prejudiced when hiring new staff, while nearly half of those surveyed admitted that bias did affect their hiring choice. 20% couldn’t be sure.
When it comes to hiring, we all have our own thoughts about what an ideal candidate is supposed to look like. The problem is that our own bias can get in the way of the right decision.
If you’ve already pre-determined a candidate’s suitability by their age, gender or the school they attended, then you could be missing out on employing the candidate with the best qualifications. Or while you’re thinking about the best ‘cultural fit’ for your team, you’re actually missing the opportunity for the best ‘cultural add’.
But what if you could take bias out of candidate screening and hiring process? Is that even possible?
Just as the Toronto Symphony Orchestra hid the identities of auditioning musicians behind a screen, there are several ways to bring blind hiring to your recruitment process:
Nearly all hiring decisions will involve a human to human interview. But take a step back in the process and blind screenings can ensure that all candidates are competing on a level playing field. With the opportunity to be assessed only on qualifications or skills, the best candidates for a role can be identified.
Blind screening is about making candidates anonymous – removing details from applications or CVs that reveal details that may colour the recruiter or hirer’s assessment. It makes it easier to make objective decisions about a candidate based on skills, experience and suitability without the distraction (and the damage!) of bias.
Unconscious bias can be triggered by someone’s name, their gender, race or age, the town they grew up in or the schools they attended.
Before making a final decision, many employers like to test a candidate’s skills or knowledge by setting a task or challenge. Others undertake personality or other testing to assess a range of relevant qualities such as aptitude, teamwork, communication skills or critical thinking. Candidates can be assigned an identifying number or code to retain their anonymity through blind testing, though this is often best done through a third-party service provider.
With face-to-face, phone or video interviews, it’s clearly impossible to keep candidates anonymous. Blind interviewing is possible, however, using a written QandA format or by using next-generation chatbots or text-driven interview software. Most recruiters and employers would agree, however, that there would be few if any, times it would be appropriate to make hiring decisions based solely on blind interviewing and without an in-person interview.
Read: The Ultimate Guide to Interview Automation
Sapia is a leading innovator and advocate in using technology to enhance the recruitment process. Our AI-enabled, text chat interview platform has been designed to deliver the ultimate in blind testing at the most important stage of the recruitment process: candidate screening.
Firstly, you will never have to read another CV again. Especially in bulk recruiting assignments, Sapia can help recruiters find the best candidates faster and more cost-effectively. CV’s are littered with bias-inducing aggravators. With Sapia, blind interviews are at the top of the recruiting funnel, not CV reviews.
By removing bias from the screening process, we’re helping employers to increase workplace diversity. It also delivers an outstanding candidate experience.
Reviewing and screening CVs is the most time-consuming part of any recruiter’s job and Sapia can put more hours back in your day.
Sapia evaluates candidates with a simple open, transparent interview via a text conversation. Candidates know mobile text and trust text.
Our platform removes all the elements that can bring unconscious bias into play – no CVs, video hook-ups, voice data or visual content. Nor do we extract data from social channels.
What candidates do discover is a non-threatening text interview that respects and recognises them for the individual they are, providing them with the space and time to tell their story in their words.
As candidates complete and submit their interview, the platform uses artificial intelligence and machine learning to test, assess and rank candidates on values, traits, personality, communications skills and more. By bringing this blind interview into the upfront screening, recruiters can gain valuable personality insights and the confidence of a shortlist with the very best matched candidates to proceed to live interviews.
The platform has a 99% satisfaction rate from candidates and they report they are motivated by the personalised feedback, insights and coaching tips that the platform provides, along with the opportunity to provide their feedback on the process.
Free from biases of the candidate’s race, gender, age or education level, Sapia’s platform delivers blind interviewing, testing and screening in one. Helping to build workplace diversity brings benefits for everyone – it can help lift employee satisfaction, boost engagement and productivity and enhance the reputation of your business as a great employer.
We believe there is a formula for trust when it comes to interviewing …
Final human decision supported by objective data. Or more simply:
Trust = (Inclusivity + Transparency + Explainability + Consistency) – Bias
Find out more about our AI-powered blind recruitment tool and how we can support your hiring needs today. You can try out Sapia’s Chat Interview right now – here. Else you can leave us your details to receive a personalised demo
It offers a pathway to fairer hiring. Get diversity and inclusion right whilst hiring on time and on budget.
In this Inclusivity e-Book, you’ll learn:
Predictive Talent Analytics turns the imaginary into reality, presenting a variety of businesses, including contact centres, with the opportunity to improve hiring outcomes and raise the performance bar. With only a minor tweak to existing business processes, predictive talent analytics addresses challenge faced by many contact centres.
Recruitment typically involves face-to-face or telephone interviews and psychometric or situational awareness tests. However, there’s an opportunity to make better hires and to achieve better outcomes through the use of Predictive Talent Analytics.
Many organisations are already using analytics to help with their talent processes. Crucially, these are descriptive analytical tools. They’re reporting the past and present. They aren’t looking forward to tomorrow and that’s key. If the business is moving forward your talent tools should also be pointing in the same direction.
Consider a call-waiting display board showing missed and waiting calls. This is reporting.
Alternatively, consider a board that does the same but also accurately predicts significant increases in call volumes, providing you with enough time to increase staffing levels appropriately. That’s predictive.
Descriptive analytical tools showing the path to achievement taken by good performers within the business can add value. But does that mean that every candidate within a bracketed level of academic achievement, from a particular socio-economic background, from a certain area of town or from a particular job board is right for your business? It’s unlikely! Psychometric tests add value but does that mean that everyone within a pre-set number of personality types will be a good fit for your business? That’s also unlikely.
The simple truth is that, even with psychometric testing and rigorous interviews, people are still cycling out of contact centres and the same business challenges remain.
With only a minor tweak to talent processes, predictive talent analytics presents an opportunity to harness existing data and drive the business forward by making hiring recommendations based on somebody’s future capability.
But wait, it gets better!
Pick the right predictive talent analytics tool and this can be done in an interesting, innovative and intriguing way taking approximately five minutes.
Once the tool’s algorithm knows what good looks like, crucially within your business (because every company is different!), your talent acquisition team can approach the wider talent market armed with a new tool that will drive up efficiency and performance.
Picking the right hires, first time.
Consider this. Candidate A has solid, recent, relevant experience and good academic grades, ticking all the right hiring boxes but post-hire subsequently cycles out of the business in a few months.
Candidate B is a recent school-leaver with poor grades, no work history but receives a high-performance prediction and, once trained, becomes an excellent employee for many years to come.
On paper candidate A is the better prospect but with the fullness of time, candidate B, identified using predictive talent analytics, is the better hire.
Instead of using generic personality bandings to make hiring decisions, use a different solution.
Use predictive talent analytics to rapidly identify people who will generate more sales or any other measured output. Find those who will be absent less or those who will help the business achieve a higher NPS. Bring applicants into the recruitment pipeline knowing the data is showing they will be a capable, or excellent, performer for your business.
Now that’s an opportunity worth grasping!
Steven John worked within contact centres whilst studying at university, was a recruiter for 13 years and is now Business Development Manager at Sapia, a leading workforce science business providing a data-driven prediction with every hire. This article was originally written for the UK Contact Centre Forum
You can try out Sapia’s FirstInterview right now, or leave us your details to book a demo
The value is greatest when companies harness the differences between employees from multiple demographic backgrounds to understand and appeal to a broad customer base. But true diversity relies on social mobility and therein lies the problem: the rate of social mobility in the UK is the worst in the developed world.
The root cause of the UK’s lack of social mobility can be found in the very place that it can bring the most value – the workplace. Employers’ recruiting processes often suffer from unconscious human bias that results in involuntary discrimination. As a result, the correlation between what an employee in the UK earns today and what his or her father earned is more apparent than in any other major economy.
This article explores the barriers to occupational mobility in the UK and the growing use of predictive analytics or algorithmic hiring to neutralise unintentional prejudice against age, academic background, class, ethnicity, colour, gender, disability, sexual orientation and religion.
The UK government has highlighted the fact that ‘patterns of inequality are imprinted from one generation to the next’ and has pledged to make their vision of a socially mobile country a reality. At the recent Conservative party conference in Manchester, David Cameron condemned the country’s lack of social mobility as unacceptable for ‘the party of aspiration’. Some of the eye-opening statistics quoted by Cameron include:
The OECD claims that income inequality cost the UK 9% in GDP growth between 1990 and 2010. Fewer educational opportunities for disadvantaged individuals had the effect of lowering social mobility and hampering skills development. Those from poor socio economic backgrounds may be just as talented as their privately educated contemporaries and perhaps the missing link in bridging the skills gap in the UK. Various industry sectors have hit out at the government’s immigration policy, claiming this widens the country’s skills gap still further.
Besides immigration, there are other barriers to social mobility within the UK that need to be lifted. Research by Deloitte has shown that 35% of jobs over the next 20 years will be automated. These are mainly unskilled roles that will impact people from low incomes. Rather than relying too heavily on skilled immigrants, the country needs to invest in training and development to upskill young people and provide home-grown talent to meet the future needs of the UK economy. Countries that promote equal opportunity for everyone from an early age are those that will grow and prosper.
The UK government’s proposal to tackle the issue of social mobility, both in education and in the workplace, has to be greatly welcomed. Cameron cited evidence that people with white-sounding names are more likely to get job interviews than equally qualified people with ethnic names, a trend that he described as ‘disgraceful’. He also referred to employers discriminating against gay people and the need to close the pay gap between men and women. Some major employers – including Deloitte, HSBC, the BBC and the NHS – are combatting this issue by introducing blind-name CVs, where the candidate’s name is blocked out on the CV and the initial screening process. UCAS has also adopted this approach in light of the fact that 36% of ethnic minority applicants from 2010-2012 received places at Russell Group universities, compared with 55% of white applicants.
Although blind-name CVs avoid initial discriminatory biases in an attempt to improve diversity in the workforce, recruiters may still be subject to similar or other biases later in the hiring process. Some law firms, for example, still insist on recruiting Oxbridge graduates, when in fact their skillset may not correlate positively with the job or company culture. While conscious human bias can only be changed through education, lobbying and a shift in attitude, a great deal can be done to eliminate unconscious human bias through predictive analytics or algorithmic hiring.
Bias in the hiring process not only thwarts social mobility but is detrimental to productivity, profitability and brand value. The best way to remove such bias is to shift reliance from humans to data science and algorithms. Human subjectivity relies on gut feel and is liable to passive bias or, at worst, active discrimination. If an employer genuinely wants to ignore a candidate’s schooling, racial background or social class, these variables can be hidden. Algorithms can have a non-discriminatory output as long as the data used to build them is also of a non-discriminatory nature.
Predictive analytics is an objective way of analysing relevant variables – such as biodata, pre-hire attitudes and personality traits – to determine which candidates are likely to perform best in their roles. By blocking out social background data, informed hiring decisions can be made that have a positive impact on company performance. The primary aim of predictive analytics is to improve organisational profitability, while a positive impact on social mobility is a healthy by-product.
A recent study in the USA revealed that the dropout rate at university will lead to a shortage of qualified graduates in the market (3 million deficit in the short term, rising to 16 million by 2025). Predictive analytics was trialled to anticipate early signs of struggle among students and to reach out with additional coaching and support. As a result, within the state of Georgia student retention rates increased by 5% and the time needed to earn a degree decreased by almost half a semester. The programme ascertained that students from high-income families were ten times more likely to complete their course than those from low-income households, enabling preventative measures to be put in place to help students from socially deprived backgrounds to succeed.
Bias and stereotyping are in-built physiological behaviours that help humans identify kinship and avoid dangerous circumstances. Such behaviours, however, cloud our judgement when it comes to recruitment decisions. More companies are shifting from a subjective recruitment process to a more objective process, which leads to decision making based on factual evidence. According to the CIPD, on average one-third of companies use assessment centres as a method to select an employee from their candidate pool. This no doubt helps to reduce subjectivity but does not eradicate it completely, as peer group bias can still be brought to bear on the outcome.
Two of the main biases which may be detrimental to hiring decisions are ‘Affinity bias’ and ‘Status Quo bias’. ‘Affinity bias’ leads to people recruiting those who are similar to themselves, while ‘Status Quo bias’ leads to recruitment decisions based on the likeness candidates have with previous hires. Recruiting on this basis may fail to match the selected person’s attributes with the requirements of the job.
Undoubtedly it is important to get along with those who will be joining the company. The key is to use data-driven modelling to narrow down the search in an objective manner before selecting based on compatibility. Predictive analytics can project how a person will fare by comparing candidate data with that of existing employees deemed to be h3 performers and relying on metrics that are devoid of the type of questioning that could lead to the discriminatory biases that inhibit social mobility.
“When it comes to making final decisions, the more data-driven recruiting managers can be, the better.”
‘Heuristic bias’ is another example of normal human behaviour that influences hiring decisions. Also known as ‘Confirmation bias’, it allows us to quickly make sense of a complex environment by drawing upon relevant known information to substantiate our reasoning. Since it is anchored on personal experience, it is by default arbitrary and can give rise to an incorrect assessment.
Other forms of bias include ‘Contrast bias’, when a candidate is compared with the previous one instead of comparing his or her individual skills and attributes to those required for the job. ‘Halo bias’ is when a recruiter sees one great thing about a candidate and allows that to sway opinion on everything else about that candidate. The opposite is ‘Horns bias’, where the recruiter sees one bad thing about a candidate and lets it cloud opinion on all their other attributes. Again, predictive analytics precludes all these forms of bias by sticking to the facts.
https://sapia.ai/blog/workplace-unconscious-bias/
Age is firmly on the agenda in the world of recruitment, yet it has been reported that over 50% of recruiters who record age in the hiring process do not employ people older than themselves. Disabled candidates are often discriminated against because recruiters cannot see past the disability. Even these fundamental stereotypes and biases can be avoided through data-driven analytics that cut to the core in matching attitudes, skills and personality to job requirements.
Once objective decisions have been made, companies need to have the confidence not to overturn them and revert to reliance on one-to-one interviews, which have low predictive power. The CIPD cautions against this and advocates a pure, data-driven approach: ‘When it comes to making final decisions, the more data-driven recruiting managers can be, the better’.
The government’s strategy for social mobility states that ‘tackling the opportunity deficit – creating an open, socially mobile society – is our guiding purpose’ but that ‘by definition, this is a long-term undertaking. There is no magic wand we can wave to see immediate effects.’ Being aware of bias is just the first step in minimising its negative effect in the hiring process. Algorithmic hiring is not the only solution but, if supported by the government and key trade bodies, it can go a long way towards remedying the inherent weakness in current recruitment practice. Once the UK’s leading businesses begin to witness the benefits of a genuinely diverse workforce in terms of increased productivity and profitability, predictive hiring will become a self-fulfilling prophecy.
During this seasonal holiday a great many of us will start to create plans for the forthcoming New Year. We’ll think about events, occurrences and happenings of the year gone by and many will commit to doing things better next year.
Even though studies have shown that only 8% of people keep their New Year’s resolutions , we still make (and subsequently break) them. But the intention was there, so good work!
Have you ever stopped to think about the processes your brain undertakes to enable you to set your goals for the New Year? No? Well, luckily I’ve done that bit for you. To make that resolution you combined your current and historical personal data and produced a future outcome, factoring in the probability of success, based on your analysis. A form of predictive analytics, if you like!
Predictive Analytics.
Thinking about those things you did (and didn’t do) this year and predicting/projecting for next year.
So now you know what it involves and we are (loosely) agreed that you’re on board with predictive analytics, when better than to tell you now that 2016 is going to be the year when we really start to see the benefits of predictive analytics within our jobs and people functions at work.
I think it’s now universally accepted that when technology is used in the right way it can enhance and improve our lives across every sector and industry. Most fields have seen significant developments over the last 20-30 years as technology is increasingly used to further our understanding of the way things work, enabling us to make better decisions in areas such as medicine, sport, communication and, arguably, even dating (predictive analytics is used in all of those sectors by the way!) so why not use it to help us find the right people for the right organisations?
Did you know you no longer need a top-class honours degree to work at Google?
Every employee is put through their analytics process allowing the business to match the right person with the right team, giving each individual the best environment to allow their talent to flourish.
Companies such as E&Y and Deloitte are using different methods to tackle the same problem – removing conscious and subconscious bias attached to the name and/or perceived quality of the university where applicants studied.
Airlines, retail, BPOs, recruitment firms a growing number of businesses within these sectors are using or on-boarding predictive analytics to achieve upturns in profits, productivity and achieving a more diverse and happier workforce.
Predictive analytics helps us make people and talent decisions to positively influence tomorrow’s business performance without bias, so I guess the question is this – if it’s already a proven science to achieve results, why isn’t everyone doing it? How long until everyone starts to use, and see the benefits, of predictive analytics?
Data can be big and it can be daunting, but it can also be invaluable if you ask and frame the right questions and combine the answers with human knowledge and experience. You will be surprised by the insights, knowledge and benefits that your business can obtain from even the smallest amounts of data. Data you probably already collect, even if it’s unknowingly or unwittingly!
So as you start rummaging through your brain trying to remember where you filed your finest seasonal outfit(s) (that might just be me!), start prepping for the new year budgets, or start writing your list of resolutions let me help you frame a few questions:
Statistically, your personal New Year’s resolution is unlikely to be on course in 12-months time so instead, why not make a resolution to bring predictive analytics into your talent processes in the upcoming year?
You’ll see the benefits for years to come, and that’s a promise we can both keep.
Happy holidays!