Back

Maximize Your Hiring Efficiency with Employsure Jobs Portal

To find out how to improve candidate experience using Recruitment Automation, we also have a great eBook on candidate experience.


By Jennifer Hewett, Australian Financial Review, 31 January

The online questionnaire, part of the Employsure jobs process, wants to know whether I respect and comply with authority. I get five options – strongly agree, agree, neutral, disagree, or strongly disagree. I tick “neutral”. Well sort of, sometimes, I think to myself, considering whether this might affect my chances on the Employsure portal.

The same choice presents itself for whether I am good at finding fault with what’s around me at work. I tick “neutral” again, guiltily acknowledging it’s just possible my editor might have a different opinion about whether I am far too good at that particular skill.

The choice seems less ambiguous when I am asked whether I forget to put things back in their proper place. I hover over “strongly agree” or “agree” and tick the latter – perhaps a little optimistically, wondering is Employsure worth it and if their interview intelligence system would pick up on my honesty.

And on it goes for 90 questions, with slight variations in the possible answers, as devised by an AI (artificial intelligence) algorithm. My responses to the bot will determine whether I get to the next stage of actually being interviewed for a job by a real person. AI approves who you should interview.

I soon get an encouraging email from Michael Morris, chief executive of Employsure – a company which provides advice on workplace relations and health and safety issues to small businesses. The Employsure contact method was straightforward, and Morris’s message clear. If I ever give up journalism, Morris tells me, I can try for a new career at Employsure. AI has approved me. Despite my deep scepticism about the process, I can’t help but feel a little pleased by the bot’s assessment.

That is because my rather self-serving answers to random personality questions fit those of the best performers at Employsure. There’s no possibility of ageism or sexism or any other latest “ism” influencing that. No old schoolmates or university or sporting framework, no biases about looks or clothes or mannerisms or personal history.

Instead, I participated in what is a variation on a personality test – based on the algorithmic analysis provided by another company, Sapia, operating in Europe and Australia and with 20 clients.

Morris says Employsure tested the performance of employees selected by Sapia’s algorithm against the choices of Employsure’s own human recruitment team for much of last year.

The fast-growing company hired around 450 people in 2018 with a workforce now totaling more than 800. Morris wanted good people and those more likely to stay.

A significant difference with AI

The experience convinced him that rather than using more traditional CVs to screen applicants, it was worth paying Sapia for its AI technology as Employsure continues to expand its numbers this year. Employsure now only interviews the 10-15 per cent of those who are graded “yes” or “maybe” by the bot.

“The overlay of AI made a significant difference in overall performance, productivity and tenure,” Morris says. “And it means the recruitment team can have a head start on engaging in better conversations with those who have interviews.” This is still a distinct minority view among Australian businesses which have been generally reluctant to embrace the promise of AI when it comes to hiring.

The trend to make greater use of AI in business generally is inevitable and accelerating. Just consider all those online “conversations” we now have about customer service and products as the ever-patient bot nudges us this way and that.

Just as inevitably, it is leading to community concerns about whether AI will be used to replace too many people’s jobs. According to a study by the McKinsey Global Institute, intelligent agents and robots could eliminate as much as 30 per cent of human labour by 2030. The scale would dwarf the move away from agricultural labour during the 1900s in the United States and Europe.

Of course, the record of technology shifts over centuries always ending up creating many more other types of jobs does not completely soothe fears that this time it’s different. Even if such alarm is overstated, dramatic changes in technology can certainly prove socially and economically disruptive for long periods. AI can also be scary.

But this version of AI is more about filling new jobs more efficiently. Many large global companies already use it to filter job applicants, especially those coming in at lower levels. Its advocates argue it efficiently eliminates bias or the tendency for people to hire in their own image.

Immediate payback with AI

Not that this always goes smoothly – even for the most digitally sophisticated businesses. Amazon abandoned its own AI hiring tool last October when management realised it had only introduced more bias into the process. Its AI system was based on modelling the CVs of those already at the company – who tended to be male. Naturally, that made prospective hires more likely to be male too. So much for gender-diversity targets.

Sapia’s chief executive is Barb Hyman, formerly a human resources executive for the online real estate advertising company REA Group. She says the system doesn’t work for those companies that don’t measure the performance of their existing employees but the data becomes more and more accurate as more information is added.

By matching responses of applicants against only those employees who are already doing well, it can be extremely efficient with immediate payback – especially for larger companies. The data can also be used to change the culture in an organisation by screening the types of personalities who are hired.

Not surprisingly, Hyman says the data demonstrates how different personalities are better fitted to different sorts of roles. So those who do well in caring jobs tend to be reliable and demonstrate traits of modesty and humility. Good salespeople are focused, somewhat self-absorbed, disorganised and transactional. Those who are involved in building long-term business relationships need to be more adaptable, resilient and open.

Sounds more like common sense than AI. But there’s less and less of that around anywhere. AI beckons instead.


Blog

Neuroinclusion by design. Not by exception.

Why neuroinclusion can’t be a retrofit and how Sapia.ai is building a better experience for every candidate.

In the past, if you were neurodivergent and applying for a job, you were often asked to disclose your diagnosis to get a basic accommodation – extra time on a test, maybe the option to skip a task. That disclosure often came with risk: of judgment, of stigma, or just being seen as different.

This wasn’t inclusion. It was bureaucracy. And it made neurodiverse candidates carry the burden of fitting in.

We’ve come a long way, but we’re not there yet.

Shifting from retrofits to inclusive-by-design

Over the last two decades, hiring practices have slowly moved away from reactive accommodations toward proactive, human-centric design. Leading employers began experimenting with:

  • Sharing interview questions in advance

  • Replacing group exercises with structured simulations

  • Offering a variety of assessment formats

  • Co-designing assessments with neurodiverse candidates

But even these advances have often been limited in scope, applied to special hiring programs or specific roles. Neurodiverse talent still encounters systems built for neurotypical profiles, with limited flexibility and a heavy dose of social performance pressure.

Hiring needs to look different.

Insight 1: The next frontier of hiring equity is universal design

Truly inclusive hiring doesn’t rely on diagnosis or disclosure. It doesn’t just give a select few special treatment. It’s about removing friction for everyone, especially those who’ve historically been excluded.

That’s why Sapia.ai was built with universal design principles from day one.

Here’s what that looks like in practice:

  • No time limits — Candidates answer at their own pace
  • No pressure to perform — It’s a conversation, not a spotlight
  • No video, no group tasks — Just structured, 1:1 chat-based interviews
  • Built-in coaching — Everyone gets personalised feedback

It’s not a workaround. It’s a rework.

Insight 2: Not all “friendly” methods are inclusive

We tend to assume that social or “casual” interview formats make people comfortable. But for many neurodiverse individuals, icebreakers, group exercises, and informal chats are the problem, not the solution.

When we asked 6,000 neurodiverse candidates about their experience using Sapia.ai’s chat-based interview, they told us:

“It felt very 1:1 and trustworthy… I had time to fully think about my answers.”

“It was less anxiety-inducing than video interviews.”

“I like that all applicants get initial interviews which ensures an unbiased and fair way to weigh-up candidates.”

Insight 3: Prediction ≠ Inclusion

Some AI systems claim to infer skills or fit from resumes or behavioural data. But if the training data is biased or the experience itself is exclusionary, you’re just replicating the same inequity with more speed and scale.

Inclusion means seeing people for who they are, not who they resemble in your data set.

At Sapia.ai, every interaction is transparent, explainable, and scientifically validated. We use structured, fair assessments that work for all brains, not just neurotypical ones.

Where to from here?

Neurodiversity is rising in both awareness and representation. However, inclusion won’t scale unless the systems behind hiring change as well.

That’s why we built a platform that:

  • Doesn’t rely on disclosure

  • Removes ambiguity and pressure

  • Creates space for everyone to shine

  • Measures what matters, fairly

Sapia.ai is already powering inclusive, structured, and scalable hiring for global employers like BT Group, Costa Coffee and Concentrix. Want to see how your hiring process can be more inclusive for neurodivergent individuals? Let’s chat. 

Read Online
Blog

Skills Measurement vs Skills Inference – What’s the Difference and Why Does It Matter?

There’s growing interest in AI-driven tools that infer skills from CVs, LinkedIn profiles, and other passive data sources. These systems claim to map someone’s capability based on the words they use, the jobs they’ve held, and patterns derived from millions of similar profiles. In theory, it’s efficient. But when inference becomes the primary basis for hiring or promotion, we need to scrutinise what’s actually being measured and what’s not.

Let’s be clear: the technology isn’t the problem. Modern inference engines use advanced natural language processing, embeddings, and knowledge graphs. The science behind them is genuinely impressive. And when they’re used alongside richer sources of data, such as internal project contributions, validated assessments, or behavioural evidence, they can offer valuable insight for workforce planning and development.

But we need to separate the two ideas:

  • Skills Measurement: Directly observing or quantifying a skill based on evidence of actual performance. 
  • Skills Inference: Estimating the likelihood that someone has a skill, based on indirect signals or patterns in their data. 

The risk lies in conflating the two.

The Problem Isn’t Inference of Skills. It’s the Data Feeding It

CVs and LinkedIn profiles are riddled with bias, inconsistency, and omission. They’re self-authored, unverified, and often written strategically – for example, to enhance certain experiences or downplay others in response to a job ad. 

And different groups represent themselves in different ways. Ahuja (2024) showed, for example, that male MBA graduates in India tend to self-promote more than their female peers. Something as simple as a longer LinkedIn ‘About’ section becomes a proxy for perceived competence.

Job titles are vague. Skill descriptions vary. Proficiency is rarely signposted. Even where systems draw on internal performance data, the quality is often questionable. Ratings tend to cluster (remember the year everyone got a ‘3’ at your org?) and can often reflect manager bias or company culture more than actual output.

Sophisticated ≠ Objective

The most advanced skill inference platforms use layered data: open web sources like job ads and bios, public databases like O*NET and ESCO, internal frameworks, even anonymised behavioural signals from platform users. This breadth gives a more complete picture, and the models powering it are undeniably sophisticated.

But sophistication doesn’t equal accuracy.

These systems rely heavily on proxies and correlations, rather than observed behaviour. They estimate presence, not proficiency. And when used in high-stakes decisions, that distinction matters.

Transparency (or Lack Thereof)

In many inference systems, it’s hard to trace where a skill came from. Was it picked up from a keyword? Assumed from a job title? Correlated with others in similar roles? The logic is rarely visible, and that’s a problem, especially when decisions based on these inferences affect access to jobs, development, or promotion.

Presence ≠ Proficiency

Inferred skills suggest someone might have a capability. But hiring isn’t about possibility. It’s about evidence of capability. Saying you’ve led a team isn’t the same as doing it well. Collecting or observing actual examples of behaviour allows you to evaluate someone’s true competence at a claimed skill. 

Some platforms try to infer proficiency, too, but this is still inference, not measurement. No matter how smart the model, it’s still drawing conclusions from indirect data.

By contrast, validated assessments like structured interviews, simulations, and psychometric tools are designed to measure. They observe behaviour against defined criteria, use consistent scoring frameworks (like Behaviourally Anchored Rating Scales, or BARS), and provide a transparent, defensible basis for decision-making. In doing this, the level or proficiency of a skill can be placed on a properly calibrated scale. 

But here’s the thing: we don’t have to choose one over the other.

A Smarter Way Forward: The Hybrid Model

The real opportunity lies in combining the rigour of measurement with the scalability of inference.

Start with measurement
Define the skills that matter. Use structured tools to capture behavioural evidence. Set a clear standard for what good looks like. For example, define Behaviourally Anchored Rating Scales (BARS) when assessing interviews for skills. Using a framework like Sapia.ai’s Competency Framework is critical for defining what you want to measure. 

Layer in inference
Apply AI to scale scoring, add contextual nuance, and detect deeper patterns that human assessors might miss, especially when reviewing large volumes of data.

Anchor the whole system in transparency and validation
Ensure people understand how inferences are made by providing clear explanations. Continuously test for fairness. Keep human oversight in the loop, especially where the stakes are high. More information on ensuring AI systems are transparent can be found in this paper.

This hybrid model respects the strengths and limits of both approaches. It recognises that AI can’t replace human judgement, but it can enhance it. That inference can extend reach, but only measurement can give you higher confidence in the results.

The Bottom Line

Inference can support and guide, but only measurement can prove. And when people’s futures are on the line, proof should always win.

References

Ahuja, A. (2024). LinkedIn profile analysis reveals gender-based differences in self-presentation among Indian MBA graduates. Journal of Business and Psychology.

 

Read Online
Blog

Making Healthcare Hiring Human with Ethical AI

Hiring for care is unlike any other sector. Recruiters are looking for people who can bring empathy, resilience, and energy to the most demanding human roles. Whether it’s dental care, mental health, or aged care, new hires are charged with looking after others when they’re most vulnerable. The stakes are high. 

Hiring for care is exactly where leveraging ethical AI can make the biggest impact.

Hiring for the traits that matter

The best carers don’t always have the best CVs.

That’s why our chat-based AI interview doesn’t screen for qualifications. It screens for the the skills that matter when caring for others. The traits that define a brilliant care worker, things like:

Empathy, Self-awareness, Accountability, Teamwork, and Energy. 

The best way to uncover these traits is through structured behavioural science, delivered through an experience that allows candidates to open up. Giving candidates space to give real-life, open-text answers. With no time pressure or video stress. Then, our AI picks up the signals that matter, free from any demographic data or bias-inducing signals.

Candidates’ answers to our structured interview questions aren’t simply ticking boxes. They’re a window into how someone shows up under pressure. And they’re helping leading care organisations hire people who belong in care and those who stay.

Inclusion, built in

Inclusivity should be a core foundation of any talent assessment, and it’s a fundamental requirement for hirers in the care industry. 

When healthcare hirers use chat-based AI interviews, designed to be inclusive for all groups, candidates complete their interviews when and where they choose, without the bias traps of face-to-face or phone screening. There are no accents to judge, no assumptions, just their words and their story.

And it works:

  • 91.8% of carer candidates complete their interviews
  • Carer candidates report 9/10 Candidate Satisfaction with their interview experience 
  • 80% of candidates would recommend others to apply 
  • Every candidate receives personalised feedback, regardless of the outcome

Drop-offs are reduced, and engagement & employer brand advocacy go up. Building a brand that candidates want to work for includes providing a hiring experience that candidates want to complete. 

Real outcomes in care hiring

Our smart chat already works for some of the most respected names in healthcare and community services. Here’s a sample of the outcomes that are possible by leveraging ethical AI, a validated scientific assessment, wrapped in an experience that candidates love: 

Anglicare – a leading provider of aged care services
  • Time-to-offer dropped from 40+ days to just 14
  • Candidate pool grew by 30%
  • Turnover dropped by 63%
Abano Healthcare – Australasia’s largest dental support organisation
  • 1,213 recruiter hours saved  in the first month (67 hours per individual hiring team member) 
  • $25,000 saved in screening and interviewing time
Berry Street – a not for profit family & child services organisation
  • Time-to-hire down from 22 to 7 days
  • 95.4% of candidates completed their chat interviews

A smarter way to hire

The case study tells the full story of how Sapia.ai helped Anglicare, Abano Healthcare, and Berry Street transform their hiring processes by scaling up, reducing burnout, and hiring with heart. 

Download it here:

Read Online