Back

Maximize Your Hiring Efficiency with Employsure Jobs Portal

To find out how to improve candidate experience using Recruitment Automation, we also have a great eBook on candidate experience.


By Jennifer Hewett, Australian Financial Review, 31 January

The online questionnaire, part of the Employsure jobs process, wants to know whether I respect and comply with authority. I get five options – strongly agree, agree, neutral, disagree, or strongly disagree. I tick “neutral”. Well sort of, sometimes, I think to myself, considering whether this might affect my chances on the Employsure portal.

The same choice presents itself for whether I am good at finding fault with what’s around me at work. I tick “neutral” again, guiltily acknowledging it’s just possible my editor might have a different opinion about whether I am far too good at that particular skill.

The choice seems less ambiguous when I am asked whether I forget to put things back in their proper place. I hover over “strongly agree” or “agree” and tick the latter – perhaps a little optimistically, wondering is Employsure worth it and if their interview intelligence system would pick up on my honesty.

And on it goes for 90 questions, with slight variations in the possible answers, as devised by an AI (artificial intelligence) algorithm. My responses to the bot will determine whether I get to the next stage of actually being interviewed for a job by a real person. AI approves who you should interview.

I soon get an encouraging email from Michael Morris, chief executive of Employsure – a company which provides advice on workplace relations and health and safety issues to small businesses. The Employsure contact method was straightforward, and Morris’s message clear. If I ever give up journalism, Morris tells me, I can try for a new career at Employsure. AI has approved me. Despite my deep scepticism about the process, I can’t help but feel a little pleased by the bot’s assessment.

That is because my rather self-serving answers to random personality questions fit those of the best performers at Employsure. There’s no possibility of ageism or sexism or any other latest “ism” influencing that. No old schoolmates or university or sporting framework, no biases about looks or clothes or mannerisms or personal history.

Instead, I participated in what is a variation on a personality test – based on the algorithmic analysis provided by another company, Sapia, operating in Europe and Australia and with 20 clients.

Morris says Employsure tested the performance of employees selected by Sapia’s algorithm against the choices of Employsure’s own human recruitment team for much of last year.

The fast-growing company hired around 450 people in 2018 with a workforce now totaling more than 800. Morris wanted good people and those more likely to stay.

A significant difference with AI

The experience convinced him that rather than using more traditional CVs to screen applicants, it was worth paying Sapia for its AI technology as Employsure continues to expand its numbers this year. Employsure now only interviews the 10-15 per cent of those who are graded “yes” or “maybe” by the bot.

“The overlay of AI made a significant difference in overall performance, productivity and tenure,” Morris says. “And it means the recruitment team can have a head start on engaging in better conversations with those who have interviews.” This is still a distinct minority view among Australian businesses which have been generally reluctant to embrace the promise of AI when it comes to hiring.

The trend to make greater use of AI in business generally is inevitable and accelerating. Just consider all those online “conversations” we now have about customer service and products as the ever-patient bot nudges us this way and that.

Just as inevitably, it is leading to community concerns about whether AI will be used to replace too many people’s jobs. According to a study by the McKinsey Global Institute, intelligent agents and robots could eliminate as much as 30 per cent of human labour by 2030. The scale would dwarf the move away from agricultural labour during the 1900s in the United States and Europe.

Of course, the record of technology shifts over centuries always ending up creating many more other types of jobs does not completely soothe fears that this time it’s different. Even if such alarm is overstated, dramatic changes in technology can certainly prove socially and economically disruptive for long periods. AI can also be scary.

But this version of AI is more about filling new jobs more efficiently. Many large global companies already use it to filter job applicants, especially those coming in at lower levels. Its advocates argue it efficiently eliminates bias or the tendency for people to hire in their own image.

Immediate payback with AI

Not that this always goes smoothly – even for the most digitally sophisticated businesses. Amazon abandoned its own AI hiring tool last October when management realised it had only introduced more bias into the process. Its AI system was based on modelling the CVs of those already at the company – who tended to be male. Naturally, that made prospective hires more likely to be male too. So much for gender-diversity targets.

Sapia’s chief executive is Barb Hyman, formerly a human resources executive for the online real estate advertising company REA Group. She says the system doesn’t work for those companies that don’t measure the performance of their existing employees but the data becomes more and more accurate as more information is added.

By matching responses of applicants against only those employees who are already doing well, it can be extremely efficient with immediate payback – especially for larger companies. The data can also be used to change the culture in an organisation by screening the types of personalities who are hired.

Not surprisingly, Hyman says the data demonstrates how different personalities are better fitted to different sorts of roles. So those who do well in caring jobs tend to be reliable and demonstrate traits of modesty and humility. Good salespeople are focused, somewhat self-absorbed, disorganised and transactional. Those who are involved in building long-term business relationships need to be more adaptable, resilient and open.

Sounds more like common sense than AI. But there’s less and less of that around anywhere. AI beckons instead.


Blog

Sapia.ai Wrapped 2024

It’s been a year of Big Moves at Sapia.ai. From welcoming groundbreaking brands to achieving incredible milestones in our product innovation and scale, we’re pushing the boundaries of what’s possible in hiring.

And we’re just getting started 🚀

Take a look at the highlights of 2024 

All-in-one hiring platform
This year, with the addition of Live Interview, we’re proud to say our platform now covers screening, assessing and scheduling.
It’s an all-in-one volume hiring platform that enables our customers to deliver a world-leading experience from application through to offer.

Supercharging hiring efficiency
Every 15 seconds, a candidate is interviewed with Sapia.ai.
This year, we’ve saved hiring managers and recruiters hours of precious time that can now be used for higher-value tasks. 

See why our users love us 

Giving candidates the best experience
Our platform allows candidates to be their best selves, so our customers can find the people that truly belong with them. They’re proud to use a technology that’s changing hiring, for good.

Share the candidate love

Leading the way in AI for hiring 

We’ve continued to push the boundaries in leveraging ethical AI for hiring, with new products on the way for Coaching, Internal Mobility & Interview Builders. 

Join us in celebrating an incredible 2024

Read Online
Blog

Situational Judgement Tests vs. AI Chat Interviews: A Modern Perspective on Candidate Assessment

Choosing the right tool for assessing candidates can be challenging. For years, situational judgement tests (SJTs) have been a common choice for evaluating behaviour and decision-making skills. However, they come with limitations that can make the hiring process less effective and less inclusive.

AI-enabled chat-based interviews, such as Sapia.ai, provide organisations with a modern alternative. They focus on understanding candidates as individuals and creating a hiring experience that is both fair and insightful while enabling efficient screening and selection. 

This shift raises important questions: Are SJTs still a tool that should be considered for volume hiring? And what do AI assessments offer in comparison?

1. The Static Nature of SJTs

Traditional SJTs use predefined multiple-choice questions to assess behavioural tendencies and situational knowledge. While useful for screening, these static frameworks lack the flexibility to adapt based on real-world performance data or evolving role requirements. 

Once created, SJTs don’t adapt to new data or evolving organisational needs. They rely on fixed scenarios and responses that may not fully reflect the dynamic realities of modern workplaces, and as a result, their relevance may diminish over time.

AI-enabled chat interviews, on the other hand, are inherently adaptive. Using machine learning, these tools can continuously refine their models based on feedback from real-world outcomes such as hiring or turnover data. This ability to evolve ensures the assessments align with organisations’ needs.

2. Richer Data Through Open-Ended Responses

One of the main critiques of SJTs is their reliance on multiple-choice responses. While structured and straightforward, these options may not capture the full scope of a candidate’s thinking, communication skills, or problem-solving ability. The approach is often limiting, reducing complex human behaviour to a few predefined choices.

AI-enabled chat interviews work more holistically and dynamically. These tools provide a more complete picture of a person by allowing candidates to answer questions in their own words. Natural language processing (NLP) analyses their responses, offering insights into personality traits, communication skills, and behavioural tendencies. This open-ended format lets candidates express themselves authentically, giving employers a deeper understanding of their potential.

3. The Candidate Experience: Stressful or Supportive?

SJTs often include time constraints and rigid formats, which can create pressure for candidates. This is especially true when candidates feel forced to choose options that don’t fully reflect how they would actually behave. The process can feel impersonal, even transactional.

In contrast, chat-based interviews are designed to be conversational and low-pressure for candidates. By removing time limits and adopting a familiar chat interface, these tools help candidates feel more at ease. They also frequently include personalised feedback, turning the assessment into a valuable experience for the candidate, not just the employer.

4. Addressing Bias and Fairness

Traditional SJTs are prone to transparency issues, as candidates can often identify and select the “best practice” answers without revealing their true tendencies. Additionally, static test designs can unintentionally embed bias; due to the nature of the timed test, SJTs have been found to disadvantage some groups. 

AI chat interviews, when developed ethically within a framework like Sapia.ai’s FAIR Hiring Framework, eliminate explicit bias by relying solely on the content of a candidate’s responses. Their machine learning models are continuously validated for fairness, ensuring that hiring decisions are free from subjective judgments or irrelevant demographic factors.

5. An Assessment That Improves Over Time

Workplaces are constantly changing, and hiring tools need to keep up. SJTs’ fixed nature can make them less effective as roles evolve or organizational priorities shift. They provide a snapshot but not a dynamic view of what’s needed.

AI-enabled chat interviews are built to adapt. With feedback loops and continuous learning, they incorporate real-world hiring outcomes—like retention and performance data—into their models. This ensures that assessments stay relevant and effective over time.

Rethinking Candidate Assessment

As hiring demands grow more complex, so does the need for tools that can capture the whole person, not just their response to hypothetical scenarios. While SJTs have played an important role in hiring practices, they are increasingly being replaced by tools like AI-enabled chat interviews.

These modern approaches provide richer data, adapt to changing needs, and create a richer and more engaging experience for candidates. Perhaps most importantly, they emphasise fairness and inclusivity, aligning with the growing demand for unbiased hiring practices.

For organisations evaluating their assessment tools, the question isn’t just which method is “better.” Understanding the specific needs of your roles, teams, and candidates will help you  choose tools that help you make decisions that are both informed and equitable.

Read Online
Blog

Keeping Interviews Real with Next-Gen AI Detection

It’s our firm belief that AI should empower, not overshadow, human potential. While AI tools like ChatGPT are brilliant at assisting us with day-to-day tasks and improving our work efficiency, employers are increasingly concerned that they’re holding candidates back from revealing their true, authentic selves in online interviews.  

As an assessment technology provider, we are responsible for ensuring the authenticity and integrity of our platform. That’s why we’re thrilled to unveil the latest upgrade to our flagship Chat Interview: the AI-Generated Content Detector 2.0. With groundbreaking accuracy and a candidate-friendly design, this innovation reinforces our mission to build ethical AI for hiring that people love.

Artificially Generated Content (AGC) is content created by an AI tool, such as ChatGPT, Claude, or Pi. We initially rolled out the first version of our AGC detector last year and have continued to improve it as our data set has grown and these AI tools have evolved.

What’s New?

Our updated AGC Detector 2.0 achieves an impressive 98% detection rate for AI-assisted responses, with a false positive rate of just 1%. This gives organisations peace of mind that they’re getting the most authentic assessment of every candidate. 

This cutting-edge system builds on Sapia.ai’s proprietary dataset of over 2 billion words, derived from more than 20 million interview question-answer pairs spanning diverse roles, industries, and regions. It’s trained on real-world data collected before and after the release of tools like ChatGPT, ensuring it remains robust and reliable even as AI tools evolve.

The Challenge of AI in Chat-based Interviews

Our data shows that around 8% of candidates use tools like GPT-4 to generate responses for three or more interview questions. While these tools may offer a quick way for candidates to complete their interview, they can inadvertently hide a person’s true personality and potential – qualities our customers are most interested in understanding through our platform. In fact, research from Sapia Labs shows that these tools have their own personality traits, which may be quite different from the candidate applying for the role. 

For Candidates: Enabling Authenticity

When a response is flagged as potentially AI-generated, the system doesn’t disqualify candidates. Instead, a real-time warning pops up, allowing them to revise their answers or submit them as-is. This ensures that candidates are encouraged to present themselves authentically, reflecting their unique communication styles and sharing their genuine experiences. 

For Hiring Teams: Actionable Insights

Responses flagged as AI-generated are highlighted in the candidate’s Talent Insights profile, accessible via Sapia.ai’s Talent Hub or ATS integrations. These insights give hiring teams the transparency to make informed decisions, fostering trust while accelerating hiring timelines. 

Built on Unmatched AI Interview Expertise

“Our detection model’s strength lies in its foundation of real-world interview data collected from diverse roles and regions,” says Dr Buddhi Jayatilleke, Sapia.ai’s Chief Data Scientist. This depth of understanding enables the AGC Detector to maintain its industry-leading accuracy – even when candidates subtly modify AI-generated answers to appear more human.

Why This Matters

The AGC Detector 2.0 embodies Sapia.ai’s commitment to ethical AI that amplifies human potential. As our CEO Barb Hyman explains:

“The hiring landscape has fundamentally changed since ChatGPT, but our commitment remains clear: AI should amplify human potential, not penalise it. This breakthrough fosters authentic hiring conversations. Our real-time warning system helps candidates make better choices and gives enterprises confidence in their selection decisions.”

Testing and Validation of the AGC Detector 2.0 

The new detector has been rigorously tested on over 25,000 interview responses generated by humans and leading AI models like GPT-4, Claude-3.5, and Llama-3. The results speak for themselves, reinforcing the reliability and fairness of this game-changing technology.

Fairness & Transparency in AI-Enabled Hiring

By detecting AI-generated content while allowing candidates to correct their responses, our AGC Detector 2.0 ensures every applicant has the chance to put their best, most authentic foot forward when applying for a role powered by Sapia.ai. For enterprises, it provides confidence in the integrity of their hiring decisions and ensures they’re connecting with real candidates at scale.

Read Online