Back

AI makes resumes redundant. Now it’s disrupting your interviews

Previously, I’ve written about how the world of recruitment has evolved.

It seems that using AI could consign fantastical or over-optimised resumes to the dustbin of history, along with the Rolodex and fax machines.

But how do we go about selecting the perfect (or as close to perfect as possible) candidates from AI-created shortlists?

It should be so easy to learn how to conduct an AI interview that adds the human element to the AI selection process. The web is awash with opportunities to earn recruitment qualifications from a variety of bodies, both respected and dubious, especially focusing on AI interview techniques. There are so many manuals, guides, and blog posts on the best ways of interviewing, including the integration of AI for interviews. People have been interviewing people for hundreds of years, but now AI is adding a new dimension to this age-old practice.

And yet…

Why are there no perfect interviews?

We’ve all heard about bizarre interview questions (no explanation needed). We’ve felt the pain of people caught up in interview nightmares (from both sides of the desk). And we’ve scratched our heads and noses over the blogs on body language in face-to-face interviews(bias klaxon).

Even without the extremes, people have tales to tell. Did you ever come away from an interview for your ideal job, where something just felt wrong?

It’s clear that adding human interaction to the recruitment process is by no means straightforward. Highlighting these recurring problems doesn’t solve the underlying question, which is:

“We’ve used an algorithm to better identify suitable candidates. How do we ensure that adding the crucial human part of hiring doesn’t re-introduce the very biases that the algorithm filtered out?”

Start by asking better questions

Searching for “Perfect interview Questions” gives 167,000,000 results. Many of them include the Perfect Answers to match. So it’s not simply about asking questions that, once upon a time, were reckoned to extract truthful and useful responses.

Instead we want questions that will make the best of that human interaction, building on and exploring the reasons the algorithm put these candidates on the list. Our questions need to help us achieve the ultimate goal of the interview: finding a candidate who can do the job, fit with the company culture AND stay for a meaningful period of time.
It’s generally agreed that we get better interview answers by asking open questions. I’d expand on that. They should ideally be questions that don’t relate specifically to the candidate’s resume, or only at the highest level, to get an in-depth understanding.

We should try to avoid using leading questions that will give an astute candidate any clues to the answers we’re looking for. And we should probably steer clear of most, if not all, of the questions that appear on those lists of ‘Perfect Interview Questions’, knowing that some candidates will reach for a well-practised ‘Perfect Answer’. We want them to display their understanding of the question and knowledge of the subject matter. Not their ability to recall a pre-rehearsed answer.

And so, we need to remember that we’re looking for the substance of the answers we get, not the candidate’s ability to weave the flimsiest material into an enchanting story.

Five new interview questions to ask your AI-shortlisted candidates

So, here are some possible questions to get you thinking.

  1. We use an algorithm as part of our hiring process to ensure we’re not missing the right candidates. Considering everything you know about us and this rlie, why do you think the algorithm has suggested you might be a good hire?
  2. If asked, what would your colleagues in your current or previous role say about your work-related exchanges with them?
  3. Tell me about any of your previous personal or career achievements that you feel relate to this role
  4. We strive to be as diverse and inclusive as possible. Tell me about the places where you’ve most enjoyed working and the communication styles of people you’ve worked best with. Please expand on your reasons
  5. Can you recall a time you’ve needed to make a business decision with incomplete information? How did you move forward?

Of course, you’ll need to frame and adjust those questions to match the role and your company.

How AI for HR helps interviews – and interviewers – get closer to perfection

AI equips recruiters with impartial insights that resumes, questionnaires and even personality profiles can’t provide. Well-constructed, supervised algorithms overlook all the biases that every human has. And that can only be a good thing.

Statistically robust AI uses an algorithm, derived from business performance and behavioural science, to shortlist candidates. It can predict which ones will do well, fit well and stay. We can trust it to know what makes a successful employee, for our particular organisation and this specific role. It can tell us to invest effort with the applicants on that shortlist. However unlikely they seem at first glance.

So we can use all of our knowledge and skills to understand a candidate’s suitability and look beyond things that might have previously led us to a rejection.
AI is the recruiter’s friend, not a competitor. It can stop us wasting time chasing candidates who we think will make great hires but instead fail to live up to the expectation. And it can direct us to the hidden gems we might have otherwise overlooked.

Technology like AI for HR is only a threat if you ignore it.

Don’t be that company that still swears by dated processes because that’s the way it’s always been done. The opportunity here is putting technology to work, helping your organisation evolve for the better. The longer the delay, the harder it will be. So don’t be left at the back playing catch-up.

There are very few businesses these days that communicate by fax machines – and that’s for a reason. In a few years, you’ll look back and wonder “Why didn’t we all embrace Artificial Intelligence sooner?”


Blog

Mirrored diversity: why retail teams should look like their customers

Walk into any store this festive season and you’ll see it instantly. The lights, the displays, the products are all crafted to draw people in. Retailers spend millions on campaigns to bring customers through the door. 

But the real moment of truth isn’t the emotional TV ad, or the shimmering window display. It’s the human standing behind the counter. That person is the brand.


The missing link in retail hiring

Most retailers know this, yet their hiring processes tell a different story. Candidates are often screened by rigid CV reviews or psychometric tests that force them into boxes. Neurodiverse candidates, career changers, and people from different cultural or educational backgrounds are often the ones who fall through the cracks.

And yet, these are the very people who may best understand your customers. If your store colleagues don’t reflect the diversity of the communities you serve, you create distance where there should be connection. You lose loyalty. You lose growth.

We call this gap the diversity mirror.


What mirrored diversity looks like

When retailers achieve mirrored diversity, their teams look like their customers:

  • A grocery store team that reflects the cultural mix of its neighbourhood.
  • A fashion store with colleagues who understand both style and accessibility.
  • A beauty retailer whose teams reflect every skin tone, gender, and background that walks through the door.

Customers buy where they feel seen – making this a commercial imperative. 

 

How to recruit seasonal employees with mirrored diversity

The challenge for HR leaders is that most hiring systems are biased by design. CVs privilege pedigree over potential. Multiple-choice tests reduce people to stereotypes. And rushed festive hiring campaigns only compound the problem.

That’s where Sapia.ai changes the equation: Every candidate is interviewed automatically, fairly, and in their own words.

  • Bias is measured and monitored using Sapia.ai’s FAIR™ framework.
  • Outcomes are validated at scale: 7+ million candidates, 52 countries, average candidate satisfaction 9.2/10.
  • Diversity can be measured: with the Diversity Dashboard, you can track DEI capture rates, candidate engagement, and diversity hiring outcomes across every stage of the funnel.

With the right HR hiring tools, mirrored diversity becomes a data point you can track, prove, and deliver on. It’s no longer just a slogan.

 

Retail recruiting strategies in action: the David Jones example

David Jones, Australia’s premium department store, put this into practice:

  • 40,000 festive applicants screened automatically
  • 80% of final hires recommended by Sapia.ai
  • Recruiters freed up 4,000 hours in screening time
  • Candidate experience rated 9.1/10

The result? Store teams that belong with the brand and reflect the customers they serve.

Read the David Jones Case Study here 👇


Recruiting ideas for retail leaders this festive season

As you prepare for festive hiring in the UK and Europe, ask yourself:

  • How much will you spend on marketing this Christmas?
  • And how much will you invest in ensuring the colleagues who deliver that brand promise reflect the people you want in your stores?

Because when your colleagues mirror your customers, you achieve growth, and by design, you’ll achieve inclusion.

See how Sapia.ai can help you achieve mirrored diversity this festive season. Book a demo with our team here. 

FAQs on retail recruitment and mirrored diversity

What is mirrored diversity in retail?

Mirrored diversity means that store teams reflect the diversity of their customer base, helping create stronger connections and loyalty.

Why is diversity important in seasonal retail hiring?

Seasonal employees often provide the first impression of a brand. Inclusive teams make customers feel seen, improving both experience and sales.

How can retailers improve their hiring strategies?

Adopting tools like AI structured interviews, bias monitoring, and data dashboards helps retailers hire fairly, reduce screening time, and build more diverse teams.

 

Read Online
Blog

The Diversity Dashboard: Proving your DEI strategy is working

Why measuring diversity matters

Organisations invest heavily in their employer brand, career sites, and EVP campaigns, especially to attract underrepresented talent. But without the right data, it’s impossible to know if that investment is paying off.

Representation often varies across functions, locations, and stages of the hiring process. Blind spots allow bias to creep in, meaning underrepresented groups may drop out long before offer.

Collecting demographic data is only step one. Turning it into insight you can act on is where real change and better hiring outcomes happen.

What is the Diversity Dashboard?

The Diversity Dashboard in Discover Insights, Sapia.ai’s analytics tool, gives you real-time visibility into representation, inclusion, and fairness at every stage of your talent funnel. It helps you connect the dots between your attraction strategies and actual hiring outcomes.

Key features include:

  • Demographic filters – Switch between gender, ethnicity, English as an additional language, First Nations status, disability, and veteran status. View age and ethnicity in standard or alternative formats to match regional reporting needs.
  • Representation highlights – Identify the top five represented sub-groups for each demographic, plus the three fastest-growing among underrepresented groups.
  • Track trends over time – See month-by-month changes in representation over the past 12 months, compare to earlier periods, and connect the data back to your EVP and attraction spend.
  • Candidate experience metrics – Measure CSAT (satisfaction) and engagement rates by demographic to ensure your hiring process works for everyone. Inclusion is measurable.
  • Hiring fairness – Compare representation in your applied, recommended, and hired pools to spot drop-offs. Understand not just who applies, but who progresses — and why.

     

From insight to action

With the Diversity Dashboard, you can pinpoint where inclusion is thriving and where it’s falling short.

  • See if your EASL candidates are applying in high numbers but not progressing to live interview.
  • Spot if candidates with a disability report high satisfaction but have lower offer rates.
  • Track the impact of targeted campaigns month-by-month and adjust quickly when something isn’t working.

It’s also a powerful tool to tell your success story. Celebrate wins by showing which underrepresented groups are making the biggest gains, and share that progress with boards, executives, and regulators.

Built on science, backed by trust

Powered by explainable AI and the world’s largest structured interview dataset, your insights are fair, auditable, and evidence-based.

Measuring diversity is the first step. Using that data to take action is where you close the Diversity Gap. With the Diversity Dashboard, you can prove your strategy is working and make the changes where it isn’t.

Book a demo to see the Diversity Dashboard in action.

Read Online
Blog

Neuroinclusion by design. Not by exception.

Why neuroinclusion can’t be a retrofit and how Sapia.ai is building a better experience for every candidate.

In the past, if you were neurodivergent and applying for a job, you were often asked to disclose your diagnosis to get a basic accommodation – extra time on a test, maybe the option to skip a task. That disclosure often came with risk: of judgment, of stigma, or just being seen as different.

This wasn’t inclusion. It was bureaucracy. And it made neurodiverse candidates carry the burden of fitting in.

We’ve come a long way, but we’re not there yet.

Shifting from retrofits to inclusive-by-design

Over the last two decades, hiring practices have slowly moved away from reactive accommodations toward proactive, human-centric design. Leading employers began experimenting with:

  • Sharing interview questions in advance

  • Replacing group exercises with structured simulations

  • Offering a variety of assessment formats

  • Co-designing assessments with neurodiverse candidates

But even these advances have often been limited in scope, applied to special hiring programs or specific roles. Neurodiverse talent still encounters systems built for neurotypical profiles, with limited flexibility and a heavy dose of social performance pressure.

Hiring needs to look different.

Insight 1: The next frontier of hiring equity is universal design

Truly inclusive hiring doesn’t rely on diagnosis or disclosure. It doesn’t just give a select few special treatment. It’s about removing friction for everyone, especially those who’ve historically been excluded.

That’s why Sapia.ai was built with universal design principles from day one.

Here’s what that looks like in practice:

  • No time limits — Candidates answer at their own pace
  • No pressure to perform — It’s a conversation, not a spotlight
  • No video, no group tasks — Just structured, 1:1 chat-based interviews
  • Built-in coaching — Everyone gets personalised feedback

It’s not a workaround. It’s a rework.

Insight 2: Not all “friendly” methods are inclusive

We tend to assume that social or “casual” interview formats make people comfortable. But for many neurodiverse individuals, icebreakers, group exercises, and informal chats are the problem, not the solution.

When we asked 6,000 neurodiverse candidates about their experience using Sapia.ai’s chat-based interview, they told us:

“It felt very 1:1 and trustworthy… I had time to fully think about my answers.”

“It was less anxiety-inducing than video interviews.”

“I like that all applicants get initial interviews which ensures an unbiased and fair way to weigh-up candidates.”

Insight 3: Prediction ≠ Inclusion

Some AI systems claim to infer skills or fit from resumes or behavioural data. But if the training data is biased or the experience itself is exclusionary, you’re just replicating the same inequity with more speed and scale.

Inclusion means seeing people for who they are, not who they resemble in your data set.

At Sapia.ai, every interaction is transparent, explainable, and scientifically validated. We use structured, fair assessments that work for all brains, not just neurotypical ones.

Where to from here?

Neurodiversity is rising in both awareness and representation. However, inclusion won’t scale unless the systems behind hiring change as well.

That’s why we built a platform that:

  • Doesn’t rely on disclosure

  • Removes ambiguity and pressure

  • Creates space for everyone to shine

  • Measures what matters, fairly

Sapia.ai is already powering inclusive, structured, and scalable hiring for global employers like BT Group, Costa Coffee and Concentrix. Want to see how your hiring process can be more inclusive for neurodivergent individuals? Let’s chat. 

Read Online