Back

Ai is only as good as the experts behind it

Ai ethics in recruitment | Sapia Ai recruitment software
There has been some negative media attention lately surrounding the use of Artificial Intelligence (AI) in the recruitment space with warnings ranging from the fact that AI produces a shallow candidate pool to more serious things like amplification of bias.
There are many instances of AI being used in a way that has harmful outcomes, but it is important to clarify that this is about how AI is being implemented and not an issue with the use of AI itself.

When AI is used appropriately, responsibly, and following regulatory guidelines it is an incredibly powerful tool that can create fair outcomes for candidates who are selected without bias – in a way that no other tool at our disposal can.
This is why we think it’s worthwhile that more people better understand AI and some of the differences in the way it is used and implemented.

There is no unified Ai

Most media articles refer to AI as if it represents a singular master algorithm and fail to identify how varied the implementations of it are. Almost all AI we have today falls into the category of “narrow AI”, in other words algorithms, mostly machine learning, built to solve a specific problem. E.g. classify sentiment, detect spam, label images, parse resumes. These purpose built AI are highly dependent on the nature of the underlying training data and the expertise of the developers in making the right assumptions and tests of validity of their models. When built in the right way and used responsibly, AI has the ability to empower humans. This is why at Sapia.ai we have made various conscious design choices and adhered to a framework called FAIR™ that tests for bias, validity, explainability and inclusivity of our AI based tools.

Text over video

The biggest cause for alarm is when AI is applied to analysing video, which can lead to irrelevant inputs like clothing, background, and lighting being used as predictors of personality and job-fit. Video and speech patterns also make it nearly impossible to remove demographic information like race and gender as inputs.

Additionally, analyzing facial expressions is problematic, especially when evaluating certain candidates like those with Autism Spectrum Disorder or other forms of neurodiversity.

This is why Sapia.ai does not, and will not, use AI scoring for video interviews or even voice transcriptions from videos or audio given the word error rate introduced in transcribing speech. Instead, we opt for text – which we implement in a friendly no pressure environment that feels like you are texting a friend.

It’s worth noting that no data other than the answers given by the candidate are used in the ‘fit score’ calculation – that is, we never use demographic data, social media, CV or resume data (which also contain demographic signals, even when de-identified), or behavioral metrics such as time to complete.

Even a candidate’s raw text itself contains gender and ethnicity signals that can introduce bias, if not mitigated. This is why we only use feature scores (e.g., personality, behavioral competencies, and communication skills) derived according to a clearly defined rubric in our scoring algorithms, which our extensive research shows contain significantly less gender and ethnicity information than raw text.

Aim to uncover hidden talent while measuring potential

Another common concern is that AI will result in more uniformity rather than diversity in the workforce as algorithms narrow the pool in order to search out an employer’s ideal candidate. There are several things worth noting here.

First, identifying what the ideal candidate is – that is, what knowledge, skills, abilities, and other characteristics are important for success in the role – is what a job analysis is for and should, legally, be what your selection tool is designed to measure.

This is also not specific to AI, as all selection systems are designed to identify which candidates have a profile of traits and characteristics that indicate they will likely be successful in the role. This doesn’t automatically mean that every hire is going to be exactly the same, though. When you focus on the traits and characteristics that will set someone up to be successful, considering potential more than background or pedigree, you’re more likely to uncover hidden talent and hire more successful people from a broader, more diverse range.

Relying solely on past data to build your model also runs the risk of introducing historical data biases. This is actually why it is so important to consider the ideal candidate profile and use that to inform your scoring model. We strongly believe in keeping the human in the loop, which is why our scoring models are centred around the human-determined (via job analysis) ideal candidate profile and then optimized to ensure all bias constraints (e.g., 4/5ths rule and effect sizes) are met.

Using this approach, Sapia has helped clients achieve their DEI goals and increase their diversity hires, including impressive statistics like hiring 3x more ethnic minorities, 1.5x more women, and 2x more LGBTQ+ candidates in just 3 months.

Keep Ai processes transparent

Lastly, it’s worth acknowledging that there is often a “black box” mystery of how AI recruitment tools work. People don’t trust what they don’t understand. While we don’t expect everyone to be an expert in AI or Natural Language Processing, we do strongly believe in building trust through transparency and work hard to make sure that our models are easily understood and open to scrutiny. From third-party audits to detailed model cards to in-depth dashboarding and reporting, we aim to maximize transparency, explainability, and fairness.

We believe a fairer future can only be achieved when AI is used responsibly. AI is not the enemy, rather it’s the experience and motivation behind those promoting it that can make the difference between what is good AI and what is harmful AI.


Blog

Mirrored diversity: why retail teams should look like their customers

Walk into any store this festive season and you’ll see it instantly. The lights, the displays, the products are all crafted to draw people in. Retailers spend millions on campaigns to bring customers through the door. 

But the real moment of truth isn’t the emotional TV ad, or the shimmering window display. It’s the human standing behind the counter. That person is the brand.


The missing link in retail hiring

Most retailers know this, yet their hiring processes tell a different story. Candidates are often screened by rigid CV reviews or psychometric tests that force them into boxes. Neurodiverse candidates, career changers, and people from different cultural or educational backgrounds are often the ones who fall through the cracks.

And yet, these are the very people who may best understand your customers. If your store colleagues don’t reflect the diversity of the communities you serve, you create distance where there should be connection. You lose loyalty. You lose growth.

We call this gap the diversity mirror.


What mirrored diversity looks like

When retailers achieve mirrored diversity, their teams look like their customers:

  • A grocery store team that reflects the cultural mix of its neighbourhood.
  • A fashion store with colleagues who understand both style and accessibility.
  • A beauty retailer whose teams reflect every skin tone, gender, and background that walks through the door.

Customers buy where they feel seen – making this a commercial imperative. 

 

How to recruit seasonal employees with mirrored diversity

The challenge for HR leaders is that most hiring systems are biased by design. CVs privilege pedigree over potential. Multiple-choice tests reduce people to stereotypes. And rushed festive hiring campaigns only compound the problem.

That’s where Sapia.ai changes the equation: Every candidate is interviewed automatically, fairly, and in their own words.

  • Bias is measured and monitored using Sapia.ai’s FAIR™ framework.
  • Outcomes are validated at scale: 7+ million candidates, 52 countries, average candidate satisfaction 9.2/10.
  • Diversity can be measured: with the Diversity Dashboard, you can track DEI capture rates, candidate engagement, and diversity hiring outcomes across every stage of the funnel.

With the right HR hiring tools, mirrored diversity becomes a data point you can track, prove, and deliver on. It’s no longer just a slogan.

 

Retail recruiting strategies in action: the David Jones example

David Jones, Australia’s premium department store, put this into practice:

  • 40,000 festive applicants screened automatically
  • 80% of final hires recommended by Sapia.ai
  • Recruiters freed up 4,000 hours in screening time
  • Candidate experience rated 9.1/10

The result? Store teams that belong with the brand and reflect the customers they serve.

Read the David Jones Case Study here 👇


Recruiting ideas for retail leaders this festive season

As you prepare for festive hiring in the UK and Europe, ask yourself:

  • How much will you spend on marketing this Christmas?
  • And how much will you invest in ensuring the colleagues who deliver that brand promise reflect the people you want in your stores?

Because when your colleagues mirror your customers, you achieve growth, and by design, you’ll achieve inclusion.

See how Sapia.ai can help you achieve mirrored diversity this festive season. Book a demo with our team here. 

FAQs on retail recruitment and mirrored diversity

What is mirrored diversity in retail?

Mirrored diversity means that store teams reflect the diversity of their customer base, helping create stronger connections and loyalty.

Why is diversity important in seasonal retail hiring?

Seasonal employees often provide the first impression of a brand. Inclusive teams make customers feel seen, improving both experience and sales.

How can retailers improve their hiring strategies?

Adopting tools like AI structured interviews, bias monitoring, and data dashboards helps retailers hire fairly, reduce screening time, and build more diverse teams.

 

Read Online
Blog

The Diversity Dashboard: Proving your DEI strategy is working

Why measuring diversity matters

Organisations invest heavily in their employer brand, career sites, and EVP campaigns, especially to attract underrepresented talent. But without the right data, it’s impossible to know if that investment is paying off.

Representation often varies across functions, locations, and stages of the hiring process. Blind spots allow bias to creep in, meaning underrepresented groups may drop out long before offer.

Collecting demographic data is only step one. Turning it into insight you can act on is where real change and better hiring outcomes happen.

What is the Diversity Dashboard?

The Diversity Dashboard in Discover Insights, Sapia.ai’s analytics tool, gives you real-time visibility into representation, inclusion, and fairness at every stage of your talent funnel. It helps you connect the dots between your attraction strategies and actual hiring outcomes.

Key features include:

  • Demographic filters – Switch between gender, ethnicity, English as an additional language, First Nations status, disability, and veteran status. View age and ethnicity in standard or alternative formats to match regional reporting needs.
  • Representation highlights – Identify the top five represented sub-groups for each demographic, plus the three fastest-growing among underrepresented groups.
  • Track trends over time – See month-by-month changes in representation over the past 12 months, compare to earlier periods, and connect the data back to your EVP and attraction spend.
  • Candidate experience metrics – Measure CSAT (satisfaction) and engagement rates by demographic to ensure your hiring process works for everyone. Inclusion is measurable.
  • Hiring fairness – Compare representation in your applied, recommended, and hired pools to spot drop-offs. Understand not just who applies, but who progresses — and why.

     

From insight to action

With the Diversity Dashboard, you can pinpoint where inclusion is thriving and where it’s falling short.

  • See if your EASL candidates are applying in high numbers but not progressing to live interview.
  • Spot if candidates with a disability report high satisfaction but have lower offer rates.
  • Track the impact of targeted campaigns month-by-month and adjust quickly when something isn’t working.

It’s also a powerful tool to tell your success story. Celebrate wins by showing which underrepresented groups are making the biggest gains, and share that progress with boards, executives, and regulators.

Built on science, backed by trust

Powered by explainable AI and the world’s largest structured interview dataset, your insights are fair, auditable, and evidence-based.

Measuring diversity is the first step. Using that data to take action is where you close the Diversity Gap. With the Diversity Dashboard, you can prove your strategy is working and make the changes where it isn’t.

Book a demo to see the Diversity Dashboard in action.

Read Online
Blog

Neuroinclusion by design. Not by exception.

Why neuroinclusion can’t be a retrofit and how Sapia.ai is building a better experience for every candidate.

In the past, if you were neurodivergent and applying for a job, you were often asked to disclose your diagnosis to get a basic accommodation – extra time on a test, maybe the option to skip a task. That disclosure often came with risk: of judgment, of stigma, or just being seen as different.

This wasn’t inclusion. It was bureaucracy. And it made neurodiverse candidates carry the burden of fitting in.

We’ve come a long way, but we’re not there yet.

Shifting from retrofits to inclusive-by-design

Over the last two decades, hiring practices have slowly moved away from reactive accommodations toward proactive, human-centric design. Leading employers began experimenting with:

  • Sharing interview questions in advance

  • Replacing group exercises with structured simulations

  • Offering a variety of assessment formats

  • Co-designing assessments with neurodiverse candidates

But even these advances have often been limited in scope, applied to special hiring programs or specific roles. Neurodiverse talent still encounters systems built for neurotypical profiles, with limited flexibility and a heavy dose of social performance pressure.

Hiring needs to look different.

Insight 1: The next frontier of hiring equity is universal design

Truly inclusive hiring doesn’t rely on diagnosis or disclosure. It doesn’t just give a select few special treatment. It’s about removing friction for everyone, especially those who’ve historically been excluded.

That’s why Sapia.ai was built with universal design principles from day one.

Here’s what that looks like in practice:

  • No time limits — Candidates answer at their own pace
  • No pressure to perform — It’s a conversation, not a spotlight
  • No video, no group tasks — Just structured, 1:1 chat-based interviews
  • Built-in coaching — Everyone gets personalised feedback

It’s not a workaround. It’s a rework.

Insight 2: Not all “friendly” methods are inclusive

We tend to assume that social or “casual” interview formats make people comfortable. But for many neurodiverse individuals, icebreakers, group exercises, and informal chats are the problem, not the solution.

When we asked 6,000 neurodiverse candidates about their experience using Sapia.ai’s chat-based interview, they told us:

“It felt very 1:1 and trustworthy… I had time to fully think about my answers.”

“It was less anxiety-inducing than video interviews.”

“I like that all applicants get initial interviews which ensures an unbiased and fair way to weigh-up candidates.”

Insight 3: Prediction ≠ Inclusion

Some AI systems claim to infer skills or fit from resumes or behavioural data. But if the training data is biased or the experience itself is exclusionary, you’re just replicating the same inequity with more speed and scale.

Inclusion means seeing people for who they are, not who they resemble in your data set.

At Sapia.ai, every interaction is transparent, explainable, and scientifically validated. We use structured, fair assessments that work for all brains, not just neurotypical ones.

Where to from here?

Neurodiversity is rising in both awareness and representation. However, inclusion won’t scale unless the systems behind hiring change as well.

That’s why we built a platform that:

  • Doesn’t rely on disclosure

  • Removes ambiguity and pressure

  • Creates space for everyone to shine

  • Measures what matters, fairly

Sapia.ai is already powering inclusive, structured, and scalable hiring for global employers like BT Group, Costa Coffee and Concentrix. Want to see how your hiring process can be more inclusive for neurodivergent individuals? Let’s chat. 

Read Online