Decentralized recruitment, while enabling larger companies to hire efficiently, suffers in a labor-short market.
Under ordinary circumstances – like, say, the world before COVID and the Great Resignation – it’s ideal to let local hiring managers build their own workforces. Generally speaking, the decentralized approach is better for productivity, candidate experience, and the overall satisfaction of hiring managers, who look favourably on the trust and autonomy they get from head office.
However, when good candidates are hard to come by, the dearth of talent puts stress on the joints of such a sprawling network. We hear this frequently from companies who come to us to help improve efficiency, diversity, and quality of hire.
These challenges (and others) have effected a drop in confidence in the way companies interview and process candidates. An Aptitude Research and Sapia.ai report from earlier this year found that 33% of companies aren’t confident in the way they interview, and 50% have lost talent due to poor processes. Meanwhile, 22% of the average talent pool is drained at the application stage.
Statistically speaking, roughly one in five people, at minimum, are bailing out of your application process at the very beginning.
As with many things in business, the answer to alleviating organizational pain lies in small, iterative improvements. Our recommendations do not include haphazard technological upgrades, nor do we advocate for widespread process changes. These will more than likely cause your decentralized hiring network to fall apart.
Here are some good places to start.
This is particularly important for the retail and hospitality industries, but certainly applies to any companies that hire entry-level team members at volume. Given the average level of job experience at this level of employment, most resumes and cover letters aren’t useful in gauging candidate quality. On the contrary – they take up precious hiring manager hours, are cumbersome for candidates to write, and are the main cause of the 22-24% candidate drop out rate we mentioned above. That’s not even accounting for the fact that anywhere between 60-80% of resumes contain falsifications.
Decentralization, almost by definition, makes capturing useful information difficult. But if you use an ATS as a tool for centralization, consider adding a candidate NPS measurement step to your application process. It can be as simple as a Net Promoter Score scale (1 to 10). If you hire at volume across multiple localities or regions, asking this one simple question can help you produce meaningful insights about how candidates find your process. What gets measured, gets managed, and though there are many other data points you might want to collect, this is a good (and relatively easy) place to start. If you’re keen to learn more about this, check out our podcast episode on candidate experience with Lars van Wieren, CEO at Starred.
Quantitative data is gold, but qualitative data is platinum. Make a habit of interviewing (not surveying, interviewing) your hiring managers on the ground. You’ll uncover invaluable insights that may enable you to make fast changes at scale. We help our clients collect qualitative feedback from hiring managers as a matter of course, leading to increases in productivity and hiring manager satisfaction.
Here are some useful questions to ask your hiring managers:
This kind of bottom-up research aims to understand how hiring managers are actually behaving and interacting with systems. Some may be breaking from established protocols, but if you ask them why and how, you might uncover tactics and efficiencies that can be brought back to the rest of the organization, thereby improving the way all hiring managers operate. Two adages apply here: ‘Necessity is the mother of invention’, and ‘People will always find the path of least resistance’.
This fact-finding method is better than surveys because surveys impose a limited scope in which potential problem areas are preset. “We’re asking you about these things,” you’re saying, “and therefore, we’re suggesting they’re most important.” As a result, other problems and possible solutions are likely to be excluded from discovery. You’ll always learn more by having real conversations, because they can go in any conceivable direction.
Again, incredibly useful for retail, but applicable in a wide range of industries and contexts. Think about the universal touchpoints you have with customers (a.k.a candidates) across your decentralized network. In retail, some good examples might be your receipts and carry bags. These provide you invaluable real estate to advertise your jobs and employer brand. Consider putting a URL or QR code on these assets, and you might drastically increase the amount of people who know about and apply for the jobs you advertise. This tactic has the added benefit of capitalizing on active and loyal customers; after all, if they’re buying from you, they’re a prime target for recruitment marketing.
The best part about this manner of advertising? You already own the space, and the design can be centralized and rolled out at scale.
We’d be remiss if we didn’t point out that Sapia’s Ai Smart Interviewer is a dynamite solution for the inevitable pain points of decentralised recruitment. Our technology can be rolled out across your entire company, and takes care of the application, screening, interviewing, and assessment stages of your process.
Hiring managers save time – as much as 1,600 hours per month, for some of our customers – but they still get the option to approve and interact with short-listed candidates. Better still, our platform captures vital data on diversity and candidate experience, enabling you to see exactly how your network is performing, individually and collectively.
Best of all, Sapia tech integrates directly with the leading ATS platforms, and can be rolled out in as little as four weeks.
Woolworths Group, Australia’s largest private employer, uses Sapia to hire more than 50,000 candidates per year, nationwide. To see how they flourish in a labor-short market, check out our case study here.
Barb Hyman, CEO & Founder, Sapia.ai
Every CHRO I speak to wants clarity on skills:
What skills do we have today?
What skills do we need tomorrow?
How do we close the gap?
The skills-based organisation has become HR’s holy grail. But not all skills data is created equal. The way you capture it has ethical consequences.
Some vendors mine employees’ “digital exhaust” by scanning emails, CRM activity, project tickets and Slack messages to guess what skills someone has.
It is broad and fast, but fairness is a real concern.
The alternative is to measure skills directly. Structured, science-backed conversations reveal behaviours, competencies and potential. This data is transparent, explainable and given with consent.
It takes longer to build, but it is grounded in reality.
Surveillance and trust: Do your people know their digital trails are being mined? What happens when they find out?
Bias: Who writes more Slack updates, introverts or extroverts? Who logs more Jira tickets, engineers or managers? Behaviour is not the same as skills.
Explainability: If an algorithm says, “You are good at negotiation” because you sent lots of emails, how can you validate that?
Agency: If a system builds a skills profile without consent, do employees have control over their own career data?
Skills define careers. They shape mobility, pay and opportunity. That makes how you measure them an ethical choice as well as a technical one.
At Sapia.ai, we have shown that structured, untimed, conversational AI interviews restore dignity in hiring and skills measurement. Over 8 million interviews across 50+ languages prove that candidates prefer transparent and fair processes that let them share who they are, in their own words.
Skills measurement is about trust, fairness and people’s futures.
When evaluating skills solutions, ask:
Is this system measuring real skills, or only inferring them from proxies?
Would I be comfortable if employees knew exactly how their skills profile was created?
Does this process give people agency over their data, or take it away?
The choice is between skills data that is guessed from digital traces and skills data that is earned through evidence, reflection and dialogue.
If you want trust in your people decisions, choose measurement over inference.
To see how candidates really feel about ethical skills measurement, check out our latest research report: Humanising Hiring, the largest scale analysis of candidate experience of AI interviews – ever.
What is the most ethical way to measure skills?
The most ethical method is to use structured, science-backed conversations that assess behaviours, competencies and potential with consent and transparency.
Why is skills inference problematic?
Skills inference relies on digital traces such as emails or Slack activity, which can introduce bias, raise privacy concerns and reduce employee trust.
How does ethical AI help with skills measurement?
Ethical AI, such as structured conversational interviews, ensures fairness by using consistent data, removing demographic bias and giving every candidate or employee a voice.
What should HR leaders look for in a skills platform?
Look for transparency, explainability, inclusivity and evidence that the platform measures skills directly rather than guessing from digital behaviour.
How does Sapia.ai support ethical skills measurement?
Sapia.ai uses structured, untimed chat interviews in over 50 languages. Every candidate receives
Walk into any store this festive season and you’ll see it instantly. The lights, the displays, the products are all crafted to draw people in. Retailers spend millions on campaigns to bring customers through the door.
But the real moment of truth isn’t the emotional TV ad, or the shimmering window display. It’s the human standing behind the counter. That person is the brand.
Most retailers know this, yet their hiring processes tell a different story. Candidates are often screened by rigid CV reviews or psychometric tests that force them into boxes. Neurodiverse candidates, career changers, and people from different cultural or educational backgrounds are often the ones who fall through the cracks.
And yet, these are the very people who may best understand your customers. If your store colleagues don’t reflect the diversity of the communities you serve, you create distance where there should be connection. You lose loyalty. You lose growth.
We call this gap the diversity mirror.
When retailers achieve mirrored diversity, their teams look like their customers:
Customers buy where they feel seen – making this a commercial imperative.
The challenge for HR leaders is that most hiring systems are biased by design. CVs privilege pedigree over potential. Multiple-choice tests reduce people to stereotypes. And rushed festive hiring campaigns only compound the problem.
That’s where Sapia.ai changes the equation: Every candidate is interviewed automatically, fairly, and in their own words.
With the right HR hiring tools, mirrored diversity becomes a data point you can track, prove, and deliver on. It’s no longer just a slogan.
David Jones, Australia’s premium department store, put this into practice:
The result? Store teams that belong with the brand and reflect the customers they serve.
Read the David Jones Case Study here 👇
As you prepare for festive hiring in the UK and Europe, ask yourself:
Because when your colleagues mirror your customers, you achieve growth, and by design, you’ll achieve inclusion.
See how Sapia.ai can help you achieve mirrored diversity this festive season. Book a demo with our team here.
Mirrored diversity means that store teams reflect the diversity of their customer base, helping create stronger connections and loyalty.
Seasonal employees often provide the first impression of a brand. Inclusive teams make customers feel seen, improving both experience and sales.
Adopting tools like AI structured interviews, bias monitoring, and data dashboards helps retailers hire fairly, reduce screening time, and build more diverse teams.
Organisations invest heavily in their employer brand, career sites, and EVP campaigns, especially to attract underrepresented talent. But without the right data, it’s impossible to know if that investment is paying off.
Representation often varies across functions, locations, and stages of the hiring process. Blind spots allow bias to creep in, meaning underrepresented groups may drop out long before offer.
Collecting demographic data is only step one. Turning it into insight you can act on is where real change and better hiring outcomes happen.
The Diversity Dashboard in Discover Insights, Sapia.ai’s analytics tool, gives you real-time visibility into representation, inclusion, and fairness at every stage of your talent funnel. It helps you connect the dots between your attraction strategies and actual hiring outcomes.
Key features include:
With the Diversity Dashboard, you can pinpoint where inclusion is thriving and where it’s falling short.
It’s also a powerful tool to tell your success story. Celebrate wins by showing which underrepresented groups are making the biggest gains, and share that progress with boards, executives, and regulators.
Powered by explainable AI and the world’s largest structured interview dataset, your insights are fair, auditable, and evidence-based.
Measuring diversity is the first step. Using that data to take action is where you close the Diversity Gap. With the Diversity Dashboard, you can prove your strategy is working and make the changes where it isn’t.
Book a demo to see the Diversity Dashboard in action.