Back

Why candidates prefer Chat Interviews over Video Interviews

As companies vie for talent, a candidate’s initial interaction with a potential employer sets the tone for their entire relationship, both as a potential employee and a consumer. 

Recent research by Sapia.ai, which will be presented at the 2024 SIOP Annual Conference next month, reveals that Asynchronous Chat Interviews (ACIs) scored by artificial intelligence (AI) are a preferred method of interviewing by candidates, offering a less stressful and more inclusive alternative to video interviews.

The Importance of a Positive Candidate Experience

A positive candidate experience is not just about making a good first impression; it has tangible business implications. Studies have shown that candidates who have a positive experience are more likely to accept job offers, recommend the company to others, and even become loyal customers. 

At Sapia.ai, we measure the brand advocacy of every candidate, to ensure that their experience translates to positive brand association, from both an employer and consumer brand perspective. On average, 84% of candidates applying for roles with a consumer brand are more likely to recommend their products/services as a result of their Sapia.ai Chat Interview experience.

Conversely, a negative experience can lead to candidates severing ties with the company and spreading negative feedback, which can harm the employer’s brand and bottom line. We all remember the Virgin Mobile study in which they lost 7,500 customers and approximately $5.4 million in revenue due to dissatisfaction with their candidate experience (Talent Tech Labs, 2017).

Asynchronous Interviews

With a desire to scale and automate their people processes, many organizations have looked to adopt asynchronous interviews in their volume hiring processes. 

In particular, Asynchronous video interviews (AVIs) have gained popularity for their purported cost savings and ability to streamline the recruitment process. However, they have received mixed reactions from candidates. While AVIs have been praised for their job-relatedness and ability to showcase skills, some studies suggest that AVIs are perceived as less fair and lacking a personal touch compared to face-to-face interviews.

AI-scored Chat Interviews

AI-scored Chat Interviews (ACIs) are structured interviews conducted over chat. The candidate is asked a number of standardized interview questions through a chat interface and writes their responses, which the AI then analyzes and scores. 

Sapia.ai’s research reveals that candidates perceive ACIs as cutting-edge, empowering, and convenient. The approach aligns with the instrumental-symbolic framework, suggesting that perceived innovativeness is a key factor in employer attractiveness.

Examining Candidate Reactions

This study provides compelling insights into candidate satisfaction and completion rates when comparing both AVIs and ACIs for over 1 million job candidates. The data shows that ACIs have higher satisfaction ratings than AVIs. Additionally, candidates are more likely to start and finish a chat interview, whereas candidates are more hesitant to start a video interview, leading to lower overall completion rates for AVIs. In contrast, chat interviews have nearly double the completion rates in the first 24 hours and significantly lower non-starter rates. This suggests that candidates have a higher preference for engaging with and completing chat interviews.

Gender Inclusivity in Interviews

An interesting aspect of the study is the examination of completion rates by gender. The findings indicate that women, in particular, are more likely to complete chat interviews compared to video interviews. Additionally, while both genders had higher candidate satisfaction scores for ACIs than AVIs, this effect was more pronounced for women. 

These findings are crucial, considering the potential inclusivity concerns associated with video interviews, such as fear of human bias or discrimination. The higher completion rates and candidate satisfaction for ACIs across genders, with a more pronounced improvement for women, highlight their potential to enhance inclusivity in the recruitment process. 

Chat Wins By A Mile

Thematic analysis of the open-ended feedback from candidates is overwhelmingly in favor of chat interviews. Candidates find them less stressful, easier to navigate, and more comfortable. 

A staggering 78% of candidates who mentioned a preference for one type of interview over the other expressed a preference for chat over video. This preference is especially pronounced among candidates who may feel self-conscious or anxious in video interviews, such as those with low self-esteem or social anxiety.

Further examining comment topics revealed that the top 3 themes for ACIs were: 

  1. Flexibility and relaxed nature of the interview format with no time limit or pressure;
  2. Thought-provoking, reflective, interesting, and enjoyable experience;
  3. Desire and enthusiasm to work for the company and appreciation for the ability to showcase their skills.

AVI themes, while the majority were positive, included examples of candidates expressing nervousness and discomfort with the video platform. The theme with the largest difference between ACI and AVI was candidates mentioning a preference for face-to-face interviews, with the vast majority of these comments coming from AVI candidates, over 3X the prevalence for ACI candidates. 

All Asynchronous Interviews are not created equally

The research by Sapia.ai highlights a clear trend: candidates prefer AI-scored chat interviews over video interviews.

By adopting asynchronous chat interviews at the start of the hiring process, employers can offer a more inclusive, less stressful, and more efficient interview process. 

While video interviews have a place as a secondary step for shortlisted candidates, the benefits of using chat at the top of the hiring funnel are clear.


Blog

Sapia.ai Wrapped 2024

It’s been a year of Big Moves at Sapia.ai. From welcoming groundbreaking brands to achieving incredible milestones in our product innovation and scale, we’re pushing the boundaries of what’s possible in hiring.

And we’re just getting started 🚀

Take a look at the highlights of 2024 

All-in-one hiring platform
This year, with the addition of Live Interview, we’re proud to say our platform now covers screening, assessing and scheduling.
It’s an all-in-one volume hiring platform that enables our customers to deliver a world-leading experience from application through to offer.

Supercharging hiring efficiency
Every 15 seconds, a candidate is interviewed with Sapia.ai.
This year, we’ve saved hiring managers and recruiters hours of precious time that can now be used for higher-value tasks. 

See why our users love us 

Giving candidates the best experience
Our platform allows candidates to be their best selves, so our customers can find the people that truly belong with them. They’re proud to use a technology that’s changing hiring, for good.

Share the candidate love

Leading the way in AI for hiring 

We’ve continued to push the boundaries in leveraging ethical AI for hiring, with new products on the way for Coaching, Internal Mobility & Interview Builders. 

Join us in celebrating an incredible 2024

Read Online
Blog

Situational Judgement Tests vs. AI Chat Interviews: A Modern Perspective on Candidate Assessment

Choosing the right tool for assessing candidates can be challenging. For years, situational judgement tests (SJTs) have been a common choice for evaluating behaviour and decision-making skills. However, they come with limitations that can make the hiring process less effective and less inclusive.

AI-enabled chat-based interviews, such as Sapia.ai, provide organisations with a modern alternative. They focus on understanding candidates as individuals and creating a hiring experience that is both fair and insightful while enabling efficient screening and selection. 

This shift raises important questions: Are SJTs still a tool that should be considered for volume hiring? And what do AI assessments offer in comparison?

1. The Static Nature of SJTs

Traditional SJTs use predefined multiple-choice questions to assess behavioural tendencies and situational knowledge. While useful for screening, these static frameworks lack the flexibility to adapt based on real-world performance data or evolving role requirements. 

Once created, SJTs don’t adapt to new data or evolving organisational needs. They rely on fixed scenarios and responses that may not fully reflect the dynamic realities of modern workplaces, and as a result, their relevance may diminish over time.

AI-enabled chat interviews, on the other hand, are inherently adaptive. Using machine learning, these tools can continuously refine their models based on feedback from real-world outcomes such as hiring or turnover data. This ability to evolve ensures the assessments align with organisations’ needs.

2. Richer Data Through Open-Ended Responses

One of the main critiques of SJTs is their reliance on multiple-choice responses. While structured and straightforward, these options may not capture the full scope of a candidate’s thinking, communication skills, or problem-solving ability. The approach is often limiting, reducing complex human behaviour to a few predefined choices.

AI-enabled chat interviews work more holistically and dynamically. These tools provide a more complete picture of a person by allowing candidates to answer questions in their own words. Natural language processing (NLP) analyses their responses, offering insights into personality traits, communication skills, and behavioural tendencies. This open-ended format lets candidates express themselves authentically, giving employers a deeper understanding of their potential.

3. The Candidate Experience: Stressful or Supportive?

SJTs often include time constraints and rigid formats, which can create pressure for candidates. This is especially true when candidates feel forced to choose options that don’t fully reflect how they would actually behave. The process can feel impersonal, even transactional.

In contrast, chat-based interviews are designed to be conversational and low-pressure for candidates. By removing time limits and adopting a familiar chat interface, these tools help candidates feel more at ease. They also frequently include personalised feedback, turning the assessment into a valuable experience for the candidate, not just the employer.

4. Addressing Bias and Fairness

Traditional SJTs are prone to transparency issues, as candidates can often identify and select the “best practice” answers without revealing their true tendencies. Additionally, static test designs can unintentionally embed bias; due to the nature of the timed test, SJTs have been found to disadvantage some groups. 

AI chat interviews, when developed ethically within a framework like Sapia.ai’s FAIR Hiring Framework, eliminate explicit bias by relying solely on the content of a candidate’s responses. Their machine learning models are continuously validated for fairness, ensuring that hiring decisions are free from subjective judgments or irrelevant demographic factors.

5. An Assessment That Improves Over Time

Workplaces are constantly changing, and hiring tools need to keep up. SJTs’ fixed nature can make them less effective as roles evolve or organizational priorities shift. They provide a snapshot but not a dynamic view of what’s needed.

AI-enabled chat interviews are built to adapt. With feedback loops and continuous learning, they incorporate real-world hiring outcomes—like retention and performance data—into their models. This ensures that assessments stay relevant and effective over time.

Rethinking Candidate Assessment

As hiring demands grow more complex, so does the need for tools that can capture the whole person, not just their response to hypothetical scenarios. While SJTs have played an important role in hiring practices, they are increasingly being replaced by tools like AI-enabled chat interviews.

These modern approaches provide richer data, adapt to changing needs, and create a richer and more engaging experience for candidates. Perhaps most importantly, they emphasise fairness and inclusivity, aligning with the growing demand for unbiased hiring practices.

For organisations evaluating their assessment tools, the question isn’t just which method is “better.” Understanding the specific needs of your roles, teams, and candidates will help you  choose tools that help you make decisions that are both informed and equitable.

Read Online
Blog

Keeping Interviews Real with Next-Gen AI Detection

It’s our firm belief that AI should empower, not overshadow, human potential. While AI tools like ChatGPT are brilliant at assisting us with day-to-day tasks and improving our work efficiency, employers are increasingly concerned that they’re holding candidates back from revealing their true, authentic selves in online interviews.  

As an assessment technology provider, we are responsible for ensuring the authenticity and integrity of our platform. That’s why we’re thrilled to unveil the latest upgrade to our flagship Chat Interview: the AI-Generated Content Detector 2.0. With groundbreaking accuracy and a candidate-friendly design, this innovation reinforces our mission to build ethical AI for hiring that people love.

Artificially Generated Content (AGC) is content created by an AI tool, such as ChatGPT, Claude, or Pi. We initially rolled out the first version of our AGC detector last year and have continued to improve it as our data set has grown and these AI tools have evolved.

What’s New?

Our updated AGC Detector 2.0 achieves an impressive 98% detection rate for AI-assisted responses, with a false positive rate of just 1%. This gives organisations peace of mind that they’re getting the most authentic assessment of every candidate. 

This cutting-edge system builds on Sapia.ai’s proprietary dataset of over 2 billion words, derived from more than 20 million interview question-answer pairs spanning diverse roles, industries, and regions. It’s trained on real-world data collected before and after the release of tools like ChatGPT, ensuring it remains robust and reliable even as AI tools evolve.

The Challenge of AI in Chat-based Interviews

Our data shows that around 8% of candidates use tools like GPT-4 to generate responses for three or more interview questions. While these tools may offer a quick way for candidates to complete their interview, they can inadvertently hide a person’s true personality and potential – qualities our customers are most interested in understanding through our platform. In fact, research from Sapia Labs shows that these tools have their own personality traits, which may be quite different from the candidate applying for the role. 

For Candidates: Enabling Authenticity

When a response is flagged as potentially AI-generated, the system doesn’t disqualify candidates. Instead, a real-time warning pops up, allowing them to revise their answers or submit them as-is. This ensures that candidates are encouraged to present themselves authentically, reflecting their unique communication styles and sharing their genuine experiences. 

For Hiring Teams: Actionable Insights

Responses flagged as AI-generated are highlighted in the candidate’s Talent Insights profile, accessible via Sapia.ai’s Talent Hub or ATS integrations. These insights give hiring teams the transparency to make informed decisions, fostering trust while accelerating hiring timelines. 

Built on Unmatched AI Interview Expertise

“Our detection model’s strength lies in its foundation of real-world interview data collected from diverse roles and regions,” says Dr Buddhi Jayatilleke, Sapia.ai’s Chief Data Scientist. This depth of understanding enables the AGC Detector to maintain its industry-leading accuracy – even when candidates subtly modify AI-generated answers to appear more human.

Why This Matters

The AGC Detector 2.0 embodies Sapia.ai’s commitment to ethical AI that amplifies human potential. As our CEO Barb Hyman explains:

“The hiring landscape has fundamentally changed since ChatGPT, but our commitment remains clear: AI should amplify human potential, not penalise it. This breakthrough fosters authentic hiring conversations. Our real-time warning system helps candidates make better choices and gives enterprises confidence in their selection decisions.”

Testing and Validation of the AGC Detector 2.0 

The new detector has been rigorously tested on over 25,000 interview responses generated by humans and leading AI models like GPT-4, Claude-3.5, and Llama-3. The results speak for themselves, reinforcing the reliability and fairness of this game-changing technology.

Fairness & Transparency in AI-Enabled Hiring

By detecting AI-generated content while allowing candidates to correct their responses, our AGC Detector 2.0 ensures every applicant has the chance to put their best, most authentic foot forward when applying for a role powered by Sapia.ai. For enterprises, it provides confidence in the integrity of their hiring decisions and ensures they’re connecting with real candidates at scale.

Read Online