Back

AI Tech Company in Melbourne – What inspires us!

‘What engages us’ is curated by the PredictiveHire team, a team of pioneers working at the frontier of 3 huge trends:

1. AI in HR, especially people selection. Because who you hire and who you promote are the most critical business decisions you make across most roles and organisations.
2. Soft skills are now the real skills that matter and until now, very hard to assess accurately, unbiased and efficiently.
3. Advances in computational linguistics  + processing power mean we can DNA personality from the text in a few seconds.

We are the only AI solution in the world that uses the convenience of an interview via text to screen talent. At the same time, we also give deep personalised insights to every applicant who completes the interview, and every hiring manager using our solution. The absence of any subjective information in our AI data collection also means our assessment is without bias. At last technology that truly does level the playing field.

Being pioneers we consume new ideas and research on a range of topics in our field because we are all learners in this space. Here we share what we are discovering, listening to, watching and reading … We hope you find these shares as useful and inspiring as we do!

OUR FAVOURITE BOOKS!

Ethical Algorithm
Michael Kearns and Aaron Roth

Why we love it! Because it challenges every organisation using Ai to push the boundaries of fairness.
Everybody Lies
Seth Stephens-Davidowitz

Why we love it! Because in everything we do we must always check ourselves for the alternative impacts.

Dataclysm
Christian Rudder

Why we love it! Because in everything we do we must always check ourselves for the alternative impacts.

Civilized to Death
Christopher Ryan

Why we love it! Because this made us think that what we achieve must positive and make everyone feel good!

Prediction Machines
Ajay Agrawal, Joshua Gans, Avi Goldfarb

Why we love it! Because this was  the first book on predictive analytics read by our CEO Barb which helped a lot to explain this space using simple concepts. How Smart Machines Think
Sean Gerrish

Why we love it! Because this was recommended by Matt, one of our awesome advisors.

Invisible Women: Data bias in a world designed for Men
Caroline Criado Perez

Why we love it! Whilst the audio version does feel a bit didactic at times, the narrator is so frustrated at the disconnect between the facts and what people believe about the presence or not of bias. There is some solid data referenced which reflects the deep and wide research  that has gone into uncovering often invisible nature of gender bias in many sectors.

 

NOW FOR OUR FAVOURITE PODCASTS

PODCAST #1
Michael Kearns: Algorithmic Fairness, Bias, Privacy, and Ethics in Machine Learning

Michael Kearns is a professor at University of Pennsylvania and a co-author of the new book Ethical Algorithm that is the focus of much of our conversation, including algorithmic fairness, bias, privacy, and ethics in general. But, that is just one of many fields that Michael is a world-class researcher in, some of which we touch on quickly including learning theory or theoretical foundations of machine learning, game theory, algorithmic trading, quantitative finance, computational social science, and more. This conversation is part of the Artificial Intelligence podcast. If you would like to get more information about this podcast go to https://lexfridman.com/ai(37 kB)

Why we recommend it? Very informative podcast about AI fairness with Prof Michael Kearns, a co-author of the book Ethical Algorithm.Buddhi is a regular consumer of Lex Fridmans podcasts  – he attracts an extraordinary array of minds and perspectives  from Daniel Kaheman, Melanie Mitchell, Paul Krugman, Elon Musk and he asks such thoughtful original  questions of people interviewed many times over that every podcast feels illuminating for both sides. 

PODCAST #2
Scott Adams: Avoiding Loserthink

Dilbert creator and author Scott Adams shares cognitive tools and tricks we can use to think better, expand our perspective, and avoid slumping into “loserthink.”(103 kB)
https://149366099.v2.pressablecdn.com/wp-content/uploads/2019/11/s-adams-500px.jpg

Why we recommend it? There is a story of “bias” in how he got into creating Dilbert. He was told by two employers that “we can’t promote you because you are white, because we have been promoting too many of them, so now we have to fix it”. Essentially Dilbert is a result of him leaving his day job because his employers were trying to fix bias in their promotion process!

PODCAST #3
Getting to scale with artificial intelligence – The McKinsey Podcast

Why we recommend it? Companies adopting AI across the organization are investing as much in people and processes as in technology.

PODCAST #4
Sleepwalkers podcast by iHeartRadio

Why we recommend it? With secret labs and expert guests, Sleepwalkers explores the thrill of the AI revolution hands-on, to see how we can stay in control of our future.

PODCAST #5
HBR IdeaCast: A New Way to Combat Bias at Work on Apple Podcasts

Show HBR IdeaCast, Ep A New Way to Combat Bias at Work – 14 Jan 2020(76 kB

Why we recommend it? A brilliant captivating podcast on the types of biases that turn up at work and an exploration of bias interrupters. Bias and the D & I space is overflowing with content and so it’s inspiring when you come across a wholly original way of labeling it (Bropreating whypeating, and menteruption. What’s less effective -single-bias training … -referral hiring ! because it risks ‘reproducing the demography of your current organisation’ What’s way more effective -correcting the bias in your business systems and the most contrarian view on the topic of performance reviews I’ve read for a while … Keep your performance reviews! Removing them creates a ‘petri dish for bias’.

PODCAST #6
Can Artificial Intelligence Be Smarter Than a Human Being? by Crazy/Genius

Why we recommend it? Surely, AI technology has nothing that even closely resembles human imagination. Or does it? This is a super handy podcast for those who want to know simple ways to explain AI and ML.

PODCAST #7
AI in B2B – a16z Podcast

Why we recommend it? Consumer software may have adopted and incorporated AI ahead of enterprise software, where the data is more proprietary, and the market is a few thousand companies not hundreds of millions of smartphone users. But recently AI has found its way into B2B, and it is rapidly transforming how we work and the software we use, across all industries and organizational functions.

Brilliant articulation of why FOMO is real .. as far as coming to data too late . Co pilot and auto pilot analogy is clever.
1. B2B is different. Companies care a lot about their data
2. Share for greater good and reap the benefits should be the motto of A.I. companies
3. Product design thinking with AutoPilot and CoPilot metaphors. Where can our A.I. be auto and co?
4. Use AB testing to show the benefits to the skeptics

 

OUR FAVOURITE ARTICLES

ARTICLE #1:
Chief people officer: The worst best job in tech
https://www.protocol.com/worst-best-job-in-tech
Comments: Barb can relate to this one as a former CPO, and whilst the Google case is special, in general, CPO’s should be investing in data driven methods, that allows them to take more informed decisions than not.

ARTICLE #2:
New Illinois employment law signals increased state focus on artificial intelligence in 2020
https://www.technologylawdispatch.com/2020/01/privacy-data-protection/new-illinois-employment-law-signals-increased-state-focus-on-artificial-intelligence-in-2020/
Comments:A read that provoked a bit of discussion amongst the team noting that the Act does not define “artificial intelligence,” a term that is often misunderstood and misapplied even by experts. How will they separate what traditional statistical analysis has been doing to what modern ML algorithms do. Any attempt to classify ML as something different to just statistical analysis at scale will be fun to watch. One can then argue just using averages and medians are a form of AI … Regression .. Correlations … AI bias …

Ask BERT to fill in the missing pronoun in the sentence, “The doctor got into ____ car,” and the A.I. will answer, “his” not “her.” Feed GPT-2 the prompt, “My sister really liked the color of her dress. It was ___” and the only color it is likely to use to complete the thought is “pink.”

ARTICLE #3:
A.I. breakthroughs in natural-language processing are big for business
https://www.google.com/amp/s/fortune.com/2020/01/20/natural-language-processing-business/amp/
Comments:A series of breakthroughs in a branch of A.I. called natural language processing is sparking the rapid development of revolutionary new products.

ARTICLE #4:
Are We Overly Infatuated With Deep Learning?
https://www-forbes-com.cdn.ampproject.org/c/s/www.forbes.com/sites/cognitiveworld/2019/12/26/are-we-overly-infatuated-with-deep-learning/amp/
Comments:Even Geoff Hinton, the “Einstein of deep learning” is starting to rethink core elements of deep learning and its limitations.

ARTICLE #5:
Artificial intelligence will help determine if you get your next job

https://www.vox.com/recode/2019/12/12/20993665/artificial-intelligence-ai-job-screen
Comments:AI is being used to attract applicants and to predict a candidate’s fit for a position. But is it up to the task?

ARTICLE #7:
Extroverts Prefer Plains, Introverts Like Mountains
https://bigthink.com/topography-and-personality
Causation or just correlation? There’s a very curious link between topography and personality.

ARTICLE #8:
So what is the difference between AI, ML and Deep Learning?
https://www.linkedin.com/pulse/so-what-difference-between-ai-ml-deep-learning-kanishka-mohaia

ARTICLE #9:
Attractive People Get Unfair Advantages at Work. AI Can Help.
https://hbr.org/2019/10/attractive-people-get-unfair-advantages-at-work-ai-can-help
Algorithms can make sure decisions are about performance rather than looks.

ARTICLE #10:
Artificial Intelligence in HR: a No-brainer
https://www.academia.edu/37977384/Artificial_intelligence_in_hr_a_no_brainer
This is an article from PwC that summarizes the case for AI in HR well. A really good overview.

ARTICLE #11:
Science Behind the IBM’s Personality Service
https://cloud.ibm.com/docs/services/personality-insights?topic=personality-insights-science
The background and the approach listed here is applicable to our approach too. The difference being, IBM built their models using twitter data whereas ours is more specialised/accurate for recruitment (i.e. based on more data and continuously learning). In addition, we are able to predict more than personality (e.g. job hopping attitude, traits etc).

ARTICLE #12:
Using Linguistic Cues for the Automatic Recognition of Personality in Conversation and Text 

https://www.aaai.org/Papers/JAIR/Vol30/JAIR-3012.pdf

ARTICLE #13:
Language-based personality: a new approach to personality in a digital world

ARTICLE #14:
Navigating Uncharted Waters: A roadmap to responsible innovation with AI in financial services

https://www.weforum.org/reports/navigating-uncharted-waters-a-roadmap-to-responsible-innovation-with-ai-in-financial-services
Navigating Uncharted Waters shows how financial services firms, policymakers and regulators and customers can overcome five risks and plot a course toward more rapid AI adoption.

ARTICLE #15:
Model Tuning and the Bias-Variance Tradeoff
http://www.r2d3.us/visual-intro-to-machine-learning-part-2/
Learn about bias and variance in our second animated data visualization.

ARTICLE #16:
Daniel Kahneman’s Strategy for How Your Firm Can Think Smarter
https://knowledge.wharton.upenn.edu/article/nobel-winner-daniel-kahnemans-strategy-firm-can-think-smarter/
The research is unequivocal, according to the father of behavioral economics: When it comes to decision-making, algorithms are superior to people.

ARTICLE #17:
Experience Doesn’t Predict a New Hire’s Success

https://hbr.org/2019/09/experience-doesnt-predict-a-new-hires-success
Is it time to rethink the way we assess job applicants?

ARTICLE #18:
So what is the difference between AI, ML and Deep Learning?
https://www.linkedin.com/pulse/so-what-difference-between-ai-ml-deep-learning-kanishka-mohaia/
The best ie simplest summation of this tech I have read (edited) linkedin.com. Once the domain of Sci-Fi geeks and film script writers, Artificial Intelligence or A.I.

ARTICLE #19:
Nudge management: applying behavioural science to increase knowledge worker productivit
y
https://jorgdesign.springeropen.com/articles/10.1186/s41469-017-0014-1
Knowledge worker productivity is essential for competitive strength in the digital century. Small interventions based on insights from behavioural science makes it possible for knowledge workers to be more productive. In this point of view article, we outline and discuss a new management style which we label nudge management. Nudge is a concept in behavioral sciencepolitical theory and behavioral economics which proposes positive reinforcement and indirect suggestions as ways to influence the behavior and decision making of groups or individuals. Nudging contrasts with other ways to achieve compliance, such as educationlegislation or enforcement.

We liked reading this because it mirrored what we read from candidates every day after their receive ‘MyInsights, their personalised insights profile. We believe that every person regardless  of their role craves  personal growth. The feeling they have when they receive that report- priceless for our team. “Thank you for your email. I did find it useful as it has made me really think about my workplace and personal life by self-reflecting. I feel since reading this, I have stepped up in a few different situations including at work where I had stepped up in a temporary leadership role. Personally, I have been practising speaking my mind and let go of toxic friendships and make decisions more easily.”And … After getting the insight of what you see of me & your reasoning it made me think about work place moments & how well I’ve responded to situations as well as make me think about alternative ways I could have reacted & received differing outcomes.

ARTICLE #20:
Distilling BERT models with spaCy
https://towardsdatascience.com/distilling-bert-models-with-spacy-277c7edc426c
Transfer learning is one of the most impactful recent breakthroughs in Natural Language Processing. Less than a year after its release.

ARTICLE #21:
Building Trust in Machine Learning Models (using LIME in Python)
https://www.analyticsvidhya.com/blog/2017/06/building-trust-in-machine-learning-models/
This article helps us understand working of machine learning algorithms using LIME package. Using LIME, you can understand working of black box ML models.

ARTICLE #22:
Jordan Peterson on Workplace Performance, Politics & Faulty Myers-Briggs

Hilarious watching Jordan talking about selling personality assessments but mostly he is spot on in his observations.

ARTICLE #23:
Kai-Fu Lee: AI Superpowers – China and Silicon Valley | Artificial Intelligence (AI) Podcast

Some really valuable insights in how AI is approached in the Sillicon Valley and China. Recommended because it’s always enlightening listening to Kai-Fu speak.


Blog

Reinventing the Competency Framework: A Data-Driven Approach for the AI Era

We can’t hide from reality anymore. Talent needs are shifting overnight, and AI is redefining what it means to work. Traditional talent frameworks are no longer fit for purpose. At Sapia.ai, we believe the future of talent strategy lies in a smarter, fairer, and more adaptive way of defining what great looks like. 

Our AI hiring platform is built on the largest proprietary dataset of interview answers globally – we’re a data company at heart, and we’ve seen the power of data-driven people methodology in transforming how organisations hire and retain good talent.  

So, when it came to building a new Competency Framework that could be leveraged globally for hiring for any role at any scale, of course, we used a ground-up, data-led methodology that bridges the gap between organisational psychology and AI.

Why Rethink Competency Frameworks?

Conventional frameworks are typically crafted through expert interviews and focus groups. While valuable, they tend to be subjective, static, and too slow to keep pace with evolving job demands. As roles become more fluid and technology augments or replaces task-based skills, organisations need a new way to understand the human capabilities that genuinely matter for performance.

We wanted to identify enduring, job-agnostic competencies that reflect what drives success in a modern workplace – capabilities like adaptability, resilience, learning agility, and customer orientation.

(Why competencies and not just skills? Read why here.)

Our Approach: Where AI Meets I/O Psychology

Sapia.ai’s methodology is rooted in the science of human behaviour but powered by cutting-edge AI. We asked two core questions:

  1. Can we make competency discovery agile, scalable, and evidence-based?
  2. Can we use AI to automate the process without losing the rigour of traditional psychology?

The answer to both: yes.

We began with a rich dataset of over 37,000 job descriptions across industries and role types. Using large language models (LLMs) and advanced NLP techniques, we extracted over 200,000 behavioural descriptors. These were distilled down through a four-step process:

  1. Behavioural Descriptor Extraction
  2. Clustering and Labeling
  3. Cluster Analysis by I/O Psychologists
  4. Thematic Categorisation and Definition of Competencies

This resulted in a refined list of 25 human-centric competencies, each with clear behavioural indicators and practical relevance across a wide range of roles.

Built to Scale. Built to Adapt.

Our framework is intelligent, but importantly, it’s adaptive. Organisations can apply this methodology to their own job descriptions to discover custom competencies. This bottom-up, role-data-led approach ensures alignment to real work, not just theoretical models.

And because the framework integrates directly with our AI-powered hiring tools, you get a connected system that brings your talent strategy to life. 

Our framework comes to life in the following tools: 

  • Job Analyser – Starting with a job description, it creates a unique competency profile for each role to build tailored structured interviews in seconds.
  • Structured Chat-based Interviews that assess candidates’ responses according to the competency profile for consistent candidate assessment.
  • Talent Insights Reports from every interview with deep reasoning and explainability for fair and objective hiring decisions.
  • Phai Career Coach for internal mobility and employee growth that considers their competency strengths and career aspirations.

The Future of Talent Acquisition & Development is Competency-First

Skills alone cannot predict success. Competencies do. As AI continues transforming how we work, Sapia.ai’s Competency Framework offers a scalable, scientific, and fair foundation for hiring and developing the talent of tomorrow.

Want to see how it works? Download the full framework.


 

Read Online
Blog

It’s Time to Stop Hiring for Skills, and Start Hiring for Competencies

If you’re a CHRO or Head of Recruitment at an enterprise today, chances are you’ve been inundated with messages about the importance of “skills-based hiring.” LinkedIn’s recent Work Change Report (2025) is full of compelling data: a 140% increase in the rate at which professionals are adding new skills to their profiles since 2022, and a projection that by 2030, 70% of the skills used in most jobs today will have changed.

This is essential reading. But there’s a missed opportunity: the singular focus on “skills” fails to acknowledge the real metric that talent leaders need to be using to future-proof their workforce — competencies.

Skills vs Competencies: The Crucial Distinction

  • Skills are task-specific capabilities. Think Python programming, Excel, or even negotiation.

  • Soft skills refer to interpersonal or behavioural qualities like adaptability, communication, and resilience.

But skills on their own — even soft ones — are generic, disjointed, and often disconnected from real-world performance. In contrast:

  • Competencies are clusters of skills, knowledge, behaviours and abilities that are observable, measurable, and context-specific.

Put simply, competencies answer the all-important question: Can this person apply the right skills, in the right way, at the right time, to deliver results in our environment?

Why Competencies Matter More Than Ever

The Work Change Report outlines a future where job titles are fluid, roles evolve quickly, and AI is a constant disruptor. This creates three massive challenges for hiring at scale:

  1. Roles are changing faster than static skill frameworks can keep up

  2. Job candidates may have non-linear, cross-functional backgrounds

  3. The shelf-life of technical skills is shrinking rapidly

Skills alone don’t tell us whether someone can succeed in a role that will look different 12 months from now. But competencies can. Because they measure not just what a person knows, but how they apply it.

Adaptive Talent: The New Competitive Advantage

The LinkedIn report highlights a critical insight: organisations now prioritise agility in entry-level hiring. And there’s a good reason for that. With professionals expected to hold twice as many jobs over their careers compared to 15 years ago, adaptability is not just a nice-to-have. It’s core to success.

But you can’t measure agility with a keyword on a CV. You measure it by looking at competencies like:

  • Learning agility

  • Change resilience

  • Cross-functional collaboration

  • Problem-solving in ambiguous contexts

When you shift the focus away from skills to behavioural competencies that can be defined, observed, and assessed in structured ways, you open yourself up to a much more dynamic and more useful way of managing talent.

Building a Competency-Based Talent Framework

To hire effectively at scale, particularly in a technology-driven world of work, talent leaders must shift their lens:

  1. Define Role-Specific Competencies: Move beyond job descriptions based on qualifications or vague skill sets. Break roles down into measurable competencies that reflect current and emerging performance expectations. This step is crucial for organisations to be able to accurately assess role-fit in the next stages. Sapia.ai does this automatically, taking job descriptions and building role-specific competency models in seconds.

  2. Assess Competencies Fairly and Objectively: Use structured behavioural interviews, ideally at scale. These provide a much more accurate picture of a candidate’s readiness than self-reported skills or credentials. Sapia.ai’s AI powered interviews enable competency assessment, at scale.

  3. Build Pathways for Development and Internal Mobility: A competency framework makes it easier to identify transferable strengths, development gaps, and future-fit potential. It gives employees clarity on how to grow within the business. Using an AI-powered coach can help ensure that talent is being continuously developed against the organisation’s competency framework.

The Future of Work Requires Depth, Not Just Breadth

LinkedIn’s data shows that people are learning more skills more quickly than ever. But the real question for talent leaders like you is: Are those skills being applied in ways that drive value? Are we hiring for task proficiency or performance?

The truth is that the organisations that will thrive in an AI-driven, skills-fluid economy aren’t the ones chasing the next hot skill. They’re the ones designing systems to identify, develop and scale competence.

Keen to Shift to Competencies, but Lacking a Framework? 

Sapia.ai has developed a comprehensive Competency Framework using a data-driven approach. Download the full paper here.


 

Read Online
Blog

The AGC Debate: Are AI-Written Interview Answers a Red Flag or Smart Strategy?

Every day, we read stories of increased fake or AI-assisted applications. Tools like LazyApply are just one of many flooding the market, driving up applicant volumes to never-before-seen levels. 

As an overwhelmed hiring function, how do you find the needle in the haystack without using an army of recruiters to filter through the maze?

At Sapia.ai, we help global enterprises do just that. Many of the world’s most trusted brands, such as Qantas Group, have relied on our hiring platform as a co-pilot for better hiring since 2020. 

Our Chat Interview has given millions of candidates a voice they wouldn’t have had – enabling them to share in their own words why they’re the best fit for the role. To find the people who belong with their brands, our customers must trust that their candidates represent themselves. Thus, they want to trust that our AI is analysing real human answers—not answers from a machine.  

The Rise of GPT 

When ChatGPT went viral in November 2022, we immediately adopted a defensive strategy. We had long been flagging plagiarised candidate responses, but then, we needed to act fast to flag responses using artificially generated content (‘AGC’). 

Many companies were in the same position, but Sapia.ai was the only company with a large proprietary data set of interview answers that pre-dated GPT and similar tools: 2.5 billion words written by real humans. 

That data enabled us to build a world-first:- an LLM-based AGC detector for text-based interviews, recently upgraded to v2.0 with 99% accuracy and a false positive rate of 1%. An NLP classification model built on Sapia.ai proprietary data that operates across all Sapia.ai chat interviews.

Full Transparency with Candidates

Because we value candidate trust as much as customer trust, we wanted to be transparent with candidates about our ability to detect artificially generated content (AGC). As an LLM, we could identify AGC in real time and warn candidates that we had detected it. 

This has had a powerful impact on candidate behaviour. Since our AGC detector went live, we have seen that the real-time flagging acts as a real-time disincentive to use tools like ChatGPT to generate interview responses. 

The detector generates a warning if 3 or more answers are flagged as having artificially generated content. The Sapia.ai Chat Interview uses 5 open-ended interview questions for volume hiring roles, such as retail, contact centre, and customer service, and 6 questions for professional roles, such as engineers, data scientists, graduates, etc.

Let’s Take a Closer Look at the Data… 

We see that using our AGC detector LLM to communicate live with candidates in the interview flow when artificial content has been detected has a positive effect on deterring candidates from using AI tools to generate their answers. 

The rate of AGC use declines from 1 question flagged to 5 questions – raising the flag on one question is generally enough to deter candidates from trying again. 

The graph below shows the number of candidates, from a total of almost 2.7m, that used artificially generated content in their answers.  

Differences in AGC Usage Rate by Groups 

We see no meaningful differences in candidate behaviour based on the job they are applying for or based on geography.

However, we have found differences by gender and ethnicity – for example, men use artificially generated content more than women. The graph below shows the overall completion ratios by gender – for all interviews on the left and for interviews where the number of questions with AGC detected is 5 or more on the right. 

Perception of Artificially Generated Content by Hirers. 

We’re curious to understand how hirers perceive the use of these tools to assist candidates in a written interview. The creation of the detector was based on the majority of Sapia.ai customers wanting transparency & explainability around the use of these tools by candidates, often because they want to ensure that candidates are using their own words to complete their interviews and they want to avoid wasting time progressing candidates who are not as capable as their chat interview suggests.  

However, some of our customers feel that it’s a positive reflection of the candidate, showing that they are using the tools available to them to put their best foot forward. 

It’s a mix of perspectives. 

Our detector labels it as the use of artificially generated content. It’s up to our customers how they use that information in their decision-making processes. 

This concept of having a human in the loop is one of the key dimensions of ethical AI, and we ensure that it is used in every AI-related hiring product we build. 

Interested in the science behind it all? Download our published research on developing the AGC detector 👇

Research Paper Download: AI Generated Content in Online Text-based Structured Interviews

Read Online