Back

To AI or not to AI

A recent CNN story quoted only 12% of companies used AI last year to deliver not just a faster status quo, but a complete reinvention of the way they work. The automated learning that comes from AI  solutions grounded in machine learning also delivers exponential returns to those who start early.

That same news story quantified those benefits as a 20% increase in cash flows over 10 years and the inverse is true as well – a 20% decline in cash flows for those that wait. These kinds of stats should trigger ‘FOMO’  for any enterprise business.

‘BC’ (before Covid-19), the motivation ‘to AI in HR’ might have been the automation of manual expensive HR processes, like recruitment, in a world of declining HR budgets and growing concerns about the bias we humans bring to those processes. 

‘To AI’ your HR processes can also go beyond your bottom line. It’s a way to humanise your candidate experience. A way to reduce the asymmetry of recruitment, to empower both sides to make the right decisions. It gives you this kind of candidate feedback from a solution that looks like this.

Right now,  curiosity about AI is being replaced by a burning platform for change. For those wearing the exhaustion of surge recruitment using old traditional processes (not to mention the increased chances of bias as a result), the case for change is obvious. For everyone else who does any volume of recruitment, 4 factors will accelerate the move to AI solutions.

1. The need for humanity in your people processes especially recruitment. 

Even though tragically it will soon be an employers market as unemployment rises, any organisations, including government, that can make that experience better for job seekers is onto a winner. Nothing sucks more than having to line up at Centrelink,  or fill out endless tedious application forms, and then hear nothing.

We ‘live’ on our smartphones, we expect convenience and immediate results, we want to be able to navigate a wide range of opportunities fast and make decisions fast.  This applies to services we consume regularly (think Uber Eats, Afterpay, even banking services such as our next home loan). That immediacy and convenience is now the new norm for consumers, and candidates as a consumer of their next job are looking for the same experience.

Imagine if your applicants only needed to answer 5 engaging questions over a text conversation. Every applicant also receives their own personalised feedback which helps them prepare for future interviews!

Compare recruitment to applying for a bank loan where AI has been in use for a decade or more. That’s now a reality with AI in recruitment.

Use Sapia’s FirstInterview to see how easy it is for you to give every job seeker a fast, simple and empowering experience.

And read what job seekers think about it here.

2. The accessibility and affordability of AI solutions

We specialise in volume recruitment for those roles where it is even more critical to hire the right people now. Frontline roles like your customer service teams,  carers and health care workers, sales consultants, and blue-collar workers. Our ready-made predictive models are instantly deployable enabling you to go live in under an hour.  When using our AI saves you at least $20 on every applicant, (i.e. if you receive 1000 applications, that is a saving of $20,000), and deployment is as easy a sending a link to your applicants, AI offers value to any sized organisation.

3. The right AI tool can remove bias from your recruitment and deliver a more diverse workforce

No amount of bias training will make us less biased.

The ability to measure bias is one reason to use AI-based screening tools over traditional processes. The growing awareness that AI can be fairer for people prompted the California State Assembly to pass a resolution to use unbiased technology to promote diversity in hiring.

Avoiding bias is why we use text data to assess applicants. With 25 million words to draw upon in our data bank, across 10 critical volume hiring roles, our approach is both bias-free in its design and its execution. Our technology is built on the advances in ML and NLP that allow computers to gain valuable insights from large volumes of textual data. Our AI is entirely ignorant of race, age, gender or any of those irrelevant markets of job fit.

4. Knowing someone’s traits and values is a shortcut to hiring for culture 

Marketing guru Seth Godin wrote a blog a few years ago on the ‘real skills’ that matter in hiring.

Whilst we all know what matters for our roles, our teams, our culture- real skills like resilience, curiosity,  humility, drive and so on, these attributes are invisible in a CV and very hard to assess fairly and scientifically in a phone call or f2f interview.

Using text data, we can not only uncover standard personality traits such as extraversion, openness, humility but also real skills that matter such a drive, critical thinking, team player and accountability. Our data science team has recently uncovered that the language one uses in answering standard interview questions show a correlation to how likely they are to hop jobs. New hires that leave early cost significant time and money for organisations. Identifying such candidates early on can help companies make better hiring decisions.


Blog

Reinventing the Competency Framework: A Data-Driven Approach for the AI Era

We can’t hide from reality anymore. Talent needs are shifting overnight, and AI is redefining what it means to work. Traditional talent frameworks are no longer fit for purpose. At Sapia.ai, we believe the future of talent strategy lies in a smarter, fairer, and more adaptive way of defining what great looks like. 

Our AI hiring platform is built on the largest proprietary dataset of interview answers globally – we’re a data company at heart, and we’ve seen the power of data-driven people methodology in transforming how organisations hire and retain good talent.  

So, when it came to building a new Competency Framework that could be leveraged globally for hiring for any role at any scale, of course, we used a ground-up, data-led methodology that bridges the gap between organisational psychology and AI.

Why Rethink Competency Frameworks?

Conventional frameworks are typically crafted through expert interviews and focus groups. While valuable, they tend to be subjective, static, and too slow to keep pace with evolving job demands. As roles become more fluid and technology augments or replaces task-based skills, organisations need a new way to understand the human capabilities that genuinely matter for performance.

We wanted to identify enduring, job-agnostic competencies that reflect what drives success in a modern workplace – capabilities like adaptability, resilience, learning agility, and customer orientation.

(Why competencies and not just skills? Read why here.)

Our Approach: Where AI Meets I/O Psychology

Sapia.ai’s methodology is rooted in the science of human behaviour but powered by cutting-edge AI. We asked two core questions:

  1. Can we make competency discovery agile, scalable, and evidence-based?
  2. Can we use AI to automate the process without losing the rigour of traditional psychology?

The answer to both: yes.

We began with a rich dataset of over 37,000 job descriptions across industries and role types. Using large language models (LLMs) and advanced NLP techniques, we extracted over 200,000 behavioural descriptors. These were distilled down through a four-step process:

  1. Behavioural Descriptor Extraction
  2. Clustering and Labeling
  3. Cluster Analysis by I/O Psychologists
  4. Thematic Categorisation and Definition of Competencies

This resulted in a refined list of 25 human-centric competencies, each with clear behavioural indicators and practical relevance across a wide range of roles.

Built to Scale. Built to Adapt.

Our framework is intelligent, but importantly, it’s adaptive. Organisations can apply this methodology to their own job descriptions to discover custom competencies. This bottom-up, role-data-led approach ensures alignment to real work, not just theoretical models.

And because the framework integrates directly with our AI-powered hiring tools, you get a connected system that brings your talent strategy to life. 

Our framework comes to life in the following tools: 

  • Job Analyser – Starting with a job description, it creates a unique competency profile for each role to build tailored structured interviews in seconds.
  • Structured Chat-based Interviews that assess candidates’ responses according to the competency profile for consistent candidate assessment.
  • Talent Insights Reports from every interview with deep reasoning and explainability for fair and objective hiring decisions.
  • Phai Career Coach for internal mobility and employee growth that considers their competency strengths and career aspirations.

The Future of Talent Acquisition & Development is Competency-First

Skills alone cannot predict success. Competencies do. As AI continues transforming how we work, Sapia.ai’s Competency Framework offers a scalable, scientific, and fair foundation for hiring and developing the talent of tomorrow.

Want to see how it works? Download the full framework.


 

Read Online
Blog

It’s Time to Stop Hiring for Skills, and Start Hiring for Competencies

If you’re a CHRO or Head of Recruitment at an enterprise today, chances are you’ve been inundated with messages about the importance of “skills-based hiring.” LinkedIn’s recent Work Change Report (2025) is full of compelling data: a 140% increase in the rate at which professionals are adding new skills to their profiles since 2022, and a projection that by 2030, 70% of the skills used in most jobs today will have changed.

This is essential reading. But there’s a missed opportunity: the singular focus on “skills” fails to acknowledge the real metric that talent leaders need to be using to future-proof their workforce — competencies.

Skills vs Competencies: The Crucial Distinction

  • Skills are task-specific capabilities. Think Python programming, Excel, or even negotiation.

  • Soft skills refer to interpersonal or behavioural qualities like adaptability, communication, and resilience.

But skills on their own — even soft ones — are generic, disjointed, and often disconnected from real-world performance. In contrast:

  • Competencies are clusters of skills, knowledge, behaviours and abilities that are observable, measurable, and context-specific.

Put simply, competencies answer the all-important question: Can this person apply the right skills, in the right way, at the right time, to deliver results in our environment?

Why Competencies Matter More Than Ever

The Work Change Report outlines a future where job titles are fluid, roles evolve quickly, and AI is a constant disruptor. This creates three massive challenges for hiring at scale:

  1. Roles are changing faster than static skill frameworks can keep up

  2. Job candidates may have non-linear, cross-functional backgrounds

  3. The shelf-life of technical skills is shrinking rapidly

Skills alone don’t tell us whether someone can succeed in a role that will look different 12 months from now. But competencies can. Because they measure not just what a person knows, but how they apply it.

Adaptive Talent: The New Competitive Advantage

The LinkedIn report highlights a critical insight: organisations now prioritise agility in entry-level hiring. And there’s a good reason for that. With professionals expected to hold twice as many jobs over their careers compared to 15 years ago, adaptability is not just a nice-to-have. It’s core to success.

But you can’t measure agility with a keyword on a CV. You measure it by looking at competencies like:

  • Learning agility

  • Change resilience

  • Cross-functional collaboration

  • Problem-solving in ambiguous contexts

When you shift the focus away from skills to behavioural competencies that can be defined, observed, and assessed in structured ways, you open yourself up to a much more dynamic and more useful way of managing talent.

Building a Competency-Based Talent Framework

To hire effectively at scale, particularly in a technology-driven world of work, talent leaders must shift their lens:

  1. Define Role-Specific Competencies: Move beyond job descriptions based on qualifications or vague skill sets. Break roles down into measurable competencies that reflect current and emerging performance expectations. This step is crucial for organisations to be able to accurately assess role-fit in the next stages. Sapia.ai does this automatically, taking job descriptions and building role-specific competency models in seconds.

  2. Assess Competencies Fairly and Objectively: Use structured behavioural interviews, ideally at scale. These provide a much more accurate picture of a candidate’s readiness than self-reported skills or credentials. Sapia.ai’s AI powered interviews enable competency assessment, at scale.

  3. Build Pathways for Development and Internal Mobility: A competency framework makes it easier to identify transferable strengths, development gaps, and future-fit potential. It gives employees clarity on how to grow within the business. Using an AI-powered coach can help ensure that talent is being continuously developed against the organisation’s competency framework.

The Future of Work Requires Depth, Not Just Breadth

LinkedIn’s data shows that people are learning more skills more quickly than ever. But the real question for talent leaders like you is: Are those skills being applied in ways that drive value? Are we hiring for task proficiency or performance?

The truth is that the organisations that will thrive in an AI-driven, skills-fluid economy aren’t the ones chasing the next hot skill. They’re the ones designing systems to identify, develop and scale competence.

Keen to Shift to Competencies, but Lacking a Framework? 

Sapia.ai has developed a comprehensive Competency Framework using a data-driven approach. Download the full paper here.


 

Read Online
Blog

The AGC Debate: Are AI-Written Interview Answers a Red Flag or Smart Strategy?

Every day, we read stories of increased fake or AI-assisted applications. Tools like LazyApply are just one of many flooding the market, driving up applicant volumes to never-before-seen levels. 

As an overwhelmed hiring function, how do you find the needle in the haystack without using an army of recruiters to filter through the maze?

At Sapia.ai, we help global enterprises do just that. Many of the world’s most trusted brands, such as Qantas Group, have relied on our hiring platform as a co-pilot for better hiring since 2020. 

Our Chat Interview has given millions of candidates a voice they wouldn’t have had – enabling them to share in their own words why they’re the best fit for the role. To find the people who belong with their brands, our customers must trust that their candidates represent themselves. Thus, they want to trust that our AI is analysing real human answers—not answers from a machine.  

The Rise of GPT 

When ChatGPT went viral in November 2022, we immediately adopted a defensive strategy. We had long been flagging plagiarised candidate responses, but then, we needed to act fast to flag responses using artificially generated content (‘AGC’). 

Many companies were in the same position, but Sapia.ai was the only company with a large proprietary data set of interview answers that pre-dated GPT and similar tools: 2.5 billion words written by real humans. 

That data enabled us to build a world-first:- an LLM-based AGC detector for text-based interviews, recently upgraded to v2.0 with 99% accuracy and a false positive rate of 1%. An NLP classification model built on Sapia.ai proprietary data that operates across all Sapia.ai chat interviews.

Full Transparency with Candidates

Because we value candidate trust as much as customer trust, we wanted to be transparent with candidates about our ability to detect artificially generated content (AGC). As an LLM, we could identify AGC in real time and warn candidates that we had detected it. 

This has had a powerful impact on candidate behaviour. Since our AGC detector went live, we have seen that the real-time flagging acts as a real-time disincentive to use tools like ChatGPT to generate interview responses. 

The detector generates a warning if 3 or more answers are flagged as having artificially generated content. The Sapia.ai Chat Interview uses 5 open-ended interview questions for volume hiring roles, such as retail, contact centre, and customer service, and 6 questions for professional roles, such as engineers, data scientists, graduates, etc.

Let’s Take a Closer Look at the Data… 

We see that using our AGC detector LLM to communicate live with candidates in the interview flow when artificial content has been detected has a positive effect on deterring candidates from using AI tools to generate their answers. 

The rate of AGC use declines from 1 question flagged to 5 questions – raising the flag on one question is generally enough to deter candidates from trying again. 

The graph below shows the number of candidates, from a total of almost 2.7m, that used artificially generated content in their answers.  

Differences in AGC Usage Rate by Groups 

We see no meaningful differences in candidate behaviour based on the job they are applying for or based on geography.

However, we have found differences by gender and ethnicity – for example, men use artificially generated content more than women. The graph below shows the overall completion ratios by gender – for all interviews on the left and for interviews where the number of questions with AGC detected is 5 or more on the right. 

Perception of Artificially Generated Content by Hirers. 

We’re curious to understand how hirers perceive the use of these tools to assist candidates in a written interview. The creation of the detector was based on the majority of Sapia.ai customers wanting transparency & explainability around the use of these tools by candidates, often because they want to ensure that candidates are using their own words to complete their interviews and they want to avoid wasting time progressing candidates who are not as capable as their chat interview suggests.  

However, some of our customers feel that it’s a positive reflection of the candidate, showing that they are using the tools available to them to put their best foot forward. 

It’s a mix of perspectives. 

Our detector labels it as the use of artificially generated content. It’s up to our customers how they use that information in their decision-making processes. 

This concept of having a human in the loop is one of the key dimensions of ethical AI, and we ensure that it is used in every AI-related hiring product we build. 

Interested in the science behind it all? Download our published research on developing the AGC detector 👇

Research Paper Download: AI Generated Content in Online Text-based Structured Interviews

Read Online