Back

Finding hidden human talent – insights from HR Tech World Congress

The Pulse of Innovation in HR

A few weeks ago, I had the privilege to attend Sir Ken Robinson’s opening keynote speech – ‘The Pulse of Innovation’ – at HR Tech World Congress in London.

(You might recognise Sir Ken Robinson from his Ted Talk, ‘Do schools kill creativity?’, which has been viewed almost 45 million times so far.)

As expected, Sir Ken’s speech was filled with equal parts of humour, inspiring stories and thought-provoking ideas around creativity and innovation at work.

Sir Ken opened by highlighting that the average lifespan of organisations is now shorter than it ever has been, and he stressed the importance of continuous innovation and adaptation to external factors in order for organisations to survive – quoting the famous example of Kodak as a company that failed to do so.

Given the context of his speech, particularly focusing on the advancements in HR tech and AI in HR, it came as little surprise that he stressed the importance of HR’s role in facilitating innovation by identifying and refining talent, and he brought forward one key point which I found particularly interesting.

human talent is often buried

Sir Ken’s point, especially relevant in the era of companies using AI in HR, is that talent is not something that we can easily identify; it is hidden within individuals, and it is HR’s role, now increasingly supported by AI in HR tech, to ‘mine’ for that talent.

 

“Human talent is highly diverse and it’s often buried. Human resources are like natural resources, you have to go and find them, cultivate them, refine them. If you do this you find that people are capable of extraordinary things.” Sir Ken Robinson

Everyone has potential but it can be quite difficult to see it amongst all the noise and stereotypes we bring with us.

To illustrate this point, Sir Ken cited his own experience interviewing Sir Paul McCartney and George Harrison, both members of a band I think you might know the name of.

During the interview, Sir Ken was surprised to find out that neither of these immensely talented musicians was recognised by their music teacher as ‘top of the class’ – yes, they happened to have the same music teacher in school.

This truly highlights the limitations of our ability to be able to determine what talent looks like (the poor music teacher must really have had to re-evaluate his assessment protocol!).

One of the reasons for this is that we are all inherently bias. While this bias is not conscious, it does affect decisions we make every day.

The ability to categorise or stereotype is an important developmental and evolutionary process that helps humans make sense of the world.

Stereotypes help us make judgements quickly without having to source all pieces of information, but it is detrimental when applied to identifying human talent and hiring decisions.

A basic example; in recruitment and talent acquisition, if successful salespeople in our organisation have all previously had red hair, we might decide that we should only hire red-haired sales assistants.

As human beings, when we try to identify what good ‘looks like’ we concentrate on a few aspects of an individual, and may end up ignoring other important factors that lead to success.

This was further highlighted in a recent Harvard Business Review article, where it was found that 40% of individuals in their study of 1,964 ‘high potentials’ (employees in the top 5% of the organisation) were incorrectly classified as belonging in that category.

In other words, almost half of those identified by managers were not high potentials at all.

42% were below average, with 12% actually being in the bottom ranks with regards to leadership effectiveness.

The point clearly illustrated here is the inability of managers to correctly identify high potentials by not concentrating on the right traits and skills of an individual – they are only human after all.

Taking the human [bias] out of hiring – to make it better for the human

Sir Ken Robinson spoke in detail about the success of the Beatles and how it was due to the diversity within their group – something that is almost impossible to achieve when allowing subjectivity to guide hiring decisions.

One way of addressing subjectivity and unconscious biases in the hiring process is to make use of data-driven technologies.

Using data to inform hiring decisions means HR can take into account the traits and skills that actually lead to performance, rather than keep focusing on hiring based on subjective stereotypes of success.

At Sapia, we develop predictive models, powered by artificial intelligence, that can predict the likelihood of candidates performing well in organisations based on their behaviour – not on the stereotype they fit into.

Our algorithms and questions are created so that everyone is given an equal opportunity to succeed and be considered, based on what actually drives performance – regardless of age, gender or nationality.

Through adopting AI and data science in the HR field, we can get one step closer to bias-free hiring and increased diversity within organisations.

Whilst AI does take the human out of some part of the hiring decision, the outcomes ensure the human is at the forefront with more opportunities for all.


If you would like to learn more about how AI can impact hiring outcomes in your organisation, feel free to get in touch with our sales team. You can also try it out here for yourself right now! 


Blog

Sapia.ai Wrapped 2024

It’s been a year of Big Moves at Sapia.ai. From welcoming groundbreaking brands to achieving incredible milestones in our product innovation and scale, we’re pushing the boundaries of what’s possible in hiring.

And we’re just getting started 🚀

Take a look at the highlights of 2024 

All-in-one hiring platform
This year, with the addition of Live Interview, we’re proud to say our platform now covers screening, assessing and scheduling.
It’s an all-in-one volume hiring platform that enables our customers to deliver a world-leading experience from application through to offer.

Supercharging hiring efficiency
Every 15 seconds, a candidate is interviewed with Sapia.ai.
This year, we’ve saved hiring managers and recruiters hours of precious time that can now be used for higher-value tasks. 

See why our users love us 

Giving candidates the best experience
Our platform allows candidates to be their best selves, so our customers can find the people that truly belong with them. They’re proud to use a technology that’s changing hiring, for good.

Share the candidate love

Leading the way in AI for hiring 

We’ve continued to push the boundaries in leveraging ethical AI for hiring, with new products on the way for Coaching, Internal Mobility & Interview Builders. 

Join us in celebrating an incredible 2024

Read Online
Blog

Situational Judgement Tests vs. AI Chat Interviews: A Modern Perspective on Candidate Assessment

Choosing the right tool for assessing candidates can be challenging. For years, situational judgement tests (SJTs) have been a common choice for evaluating behaviour and decision-making skills. However, they come with limitations that can make the hiring process less effective and less inclusive.

AI-enabled chat-based interviews, such as Sapia.ai, provide organisations with a modern alternative. They focus on understanding candidates as individuals and creating a hiring experience that is both fair and insightful while enabling efficient screening and selection. 

This shift raises important questions: Are SJTs still a tool that should be considered for volume hiring? And what do AI assessments offer in comparison?

1. The Static Nature of SJTs

Traditional SJTs use predefined multiple-choice questions to assess behavioural tendencies and situational knowledge. While useful for screening, these static frameworks lack the flexibility to adapt based on real-world performance data or evolving role requirements. 

Once created, SJTs don’t adapt to new data or evolving organisational needs. They rely on fixed scenarios and responses that may not fully reflect the dynamic realities of modern workplaces, and as a result, their relevance may diminish over time.

AI-enabled chat interviews, on the other hand, are inherently adaptive. Using machine learning, these tools can continuously refine their models based on feedback from real-world outcomes such as hiring or turnover data. This ability to evolve ensures the assessments align with organisations’ needs.

2. Richer Data Through Open-Ended Responses

One of the main critiques of SJTs is their reliance on multiple-choice responses. While structured and straightforward, these options may not capture the full scope of a candidate’s thinking, communication skills, or problem-solving ability. The approach is often limiting, reducing complex human behaviour to a few predefined choices.

AI-enabled chat interviews work more holistically and dynamically. These tools provide a more complete picture of a person by allowing candidates to answer questions in their own words. Natural language processing (NLP) analyses their responses, offering insights into personality traits, communication skills, and behavioural tendencies. This open-ended format lets candidates express themselves authentically, giving employers a deeper understanding of their potential.

3. The Candidate Experience: Stressful or Supportive?

SJTs often include time constraints and rigid formats, which can create pressure for candidates. This is especially true when candidates feel forced to choose options that don’t fully reflect how they would actually behave. The process can feel impersonal, even transactional.

In contrast, chat-based interviews are designed to be conversational and low-pressure for candidates. By removing time limits and adopting a familiar chat interface, these tools help candidates feel more at ease. They also frequently include personalised feedback, turning the assessment into a valuable experience for the candidate, not just the employer.

4. Addressing Bias and Fairness

Traditional SJTs are prone to transparency issues, as candidates can often identify and select the “best practice” answers without revealing their true tendencies. Additionally, static test designs can unintentionally embed bias; due to the nature of the timed test, SJTs have been found to disadvantage some groups. 

AI chat interviews, when developed ethically within a framework like Sapia.ai’s FAIR Hiring Framework, eliminate explicit bias by relying solely on the content of a candidate’s responses. Their machine learning models are continuously validated for fairness, ensuring that hiring decisions are free from subjective judgments or irrelevant demographic factors.

5. An Assessment That Improves Over Time

Workplaces are constantly changing, and hiring tools need to keep up. SJTs’ fixed nature can make them less effective as roles evolve or organizational priorities shift. They provide a snapshot but not a dynamic view of what’s needed.

AI-enabled chat interviews are built to adapt. With feedback loops and continuous learning, they incorporate real-world hiring outcomes—like retention and performance data—into their models. This ensures that assessments stay relevant and effective over time.

Rethinking Candidate Assessment

As hiring demands grow more complex, so does the need for tools that can capture the whole person, not just their response to hypothetical scenarios. While SJTs have played an important role in hiring practices, they are increasingly being replaced by tools like AI-enabled chat interviews.

These modern approaches provide richer data, adapt to changing needs, and create a richer and more engaging experience for candidates. Perhaps most importantly, they emphasise fairness and inclusivity, aligning with the growing demand for unbiased hiring practices.

For organisations evaluating their assessment tools, the question isn’t just which method is “better.” Understanding the specific needs of your roles, teams, and candidates will help you  choose tools that help you make decisions that are both informed and equitable.

Read Online
Blog

Keeping Interviews Real with Next-Gen AI Detection

It’s our firm belief that AI should empower, not overshadow, human potential. While AI tools like ChatGPT are brilliant at assisting us with day-to-day tasks and improving our work efficiency, employers are increasingly concerned that they’re holding candidates back from revealing their true, authentic selves in online interviews.  

As an assessment technology provider, we are responsible for ensuring the authenticity and integrity of our platform. That’s why we’re thrilled to unveil the latest upgrade to our flagship Chat Interview: the AI-Generated Content Detector 2.0. With groundbreaking accuracy and a candidate-friendly design, this innovation reinforces our mission to build ethical AI for hiring that people love.

Artificially Generated Content (AGC) is content created by an AI tool, such as ChatGPT, Claude, or Pi. We initially rolled out the first version of our AGC detector last year and have continued to improve it as our data set has grown and these AI tools have evolved.

What’s New?

Our updated AGC Detector 2.0 achieves an impressive 98% detection rate for AI-assisted responses, with a false positive rate of just 1%. This gives organisations peace of mind that they’re getting the most authentic assessment of every candidate. 

This cutting-edge system builds on Sapia.ai’s proprietary dataset of over 2 billion words, derived from more than 20 million interview question-answer pairs spanning diverse roles, industries, and regions. It’s trained on real-world data collected before and after the release of tools like ChatGPT, ensuring it remains robust and reliable even as AI tools evolve.

The Challenge of AI in Chat-based Interviews

Our data shows that around 8% of candidates use tools like GPT-4 to generate responses for three or more interview questions. While these tools may offer a quick way for candidates to complete their interview, they can inadvertently hide a person’s true personality and potential – qualities our customers are most interested in understanding through our platform. In fact, research from Sapia Labs shows that these tools have their own personality traits, which may be quite different from the candidate applying for the role. 

For Candidates: Enabling Authenticity

When a response is flagged as potentially AI-generated, the system doesn’t disqualify candidates. Instead, a real-time warning pops up, allowing them to revise their answers or submit them as-is. This ensures that candidates are encouraged to present themselves authentically, reflecting their unique communication styles and sharing their genuine experiences. 

For Hiring Teams: Actionable Insights

Responses flagged as AI-generated are highlighted in the candidate’s Talent Insights profile, accessible via Sapia.ai’s Talent Hub or ATS integrations. These insights give hiring teams the transparency to make informed decisions, fostering trust while accelerating hiring timelines. 

Built on Unmatched AI Interview Expertise

“Our detection model’s strength lies in its foundation of real-world interview data collected from diverse roles and regions,” says Dr Buddhi Jayatilleke, Sapia.ai’s Chief Data Scientist. This depth of understanding enables the AGC Detector to maintain its industry-leading accuracy – even when candidates subtly modify AI-generated answers to appear more human.

Why This Matters

The AGC Detector 2.0 embodies Sapia.ai’s commitment to ethical AI that amplifies human potential. As our CEO Barb Hyman explains:

“The hiring landscape has fundamentally changed since ChatGPT, but our commitment remains clear: AI should amplify human potential, not penalise it. This breakthrough fosters authentic hiring conversations. Our real-time warning system helps candidates make better choices and gives enterprises confidence in their selection decisions.”

Testing and Validation of the AGC Detector 2.0 

The new detector has been rigorously tested on over 25,000 interview responses generated by humans and leading AI models like GPT-4, Claude-3.5, and Llama-3. The results speak for themselves, reinforcing the reliability and fairness of this game-changing technology.

Fairness & Transparency in AI-Enabled Hiring

By detecting AI-generated content while allowing candidates to correct their responses, our AGC Detector 2.0 ensures every applicant has the chance to put their best, most authentic foot forward when applying for a role powered by Sapia.ai. For enterprises, it provides confidence in the integrity of their hiring decisions and ensures they’re connecting with real candidates at scale.

Read Online