A few weeks ago, I had the privilege to attend Sir Ken Robinson’s opening keynote speech – ‘The Pulse of Innovation’ – at HR Tech World Congress in London.
(You might recognise Sir Ken Robinson from his Ted Talk, ‘Do schools kill creativity?’, which has been viewed almost 45 million times so far.)
As expected, Sir Ken’s speech was filled with equal parts of humour, inspiring stories and thought-provoking ideas around creativity and innovation at work.
Sir Ken opened by highlighting that the average lifespan of organisations is now shorter than it ever has been, and he stressed the importance of continuous innovation and adaptation to external factors in order for organisations to survive – quoting the famous example of Kodak as a company that failed to do so.
Given the context of his speech, particularly focusing on the advancements in HR tech and AI in HR, it came as little surprise that he stressed the importance of HR’s role in facilitating innovation by identifying and refining talent, and he brought forward one key point which I found particularly interesting.
Sir Ken’s point, especially relevant in the era of companies using AI in HR, is that talent is not something that we can easily identify; it is hidden within individuals, and it is HR’s role, now increasingly supported by AI in HR tech, to ‘mine’ for that talent.
“Human talent is highly diverse and it’s often buried. Human resources are like natural resources, you have to go and find them, cultivate them, refine them. If you do this you find that people are capable of extraordinary things.” Sir Ken Robinson
Everyone has potential but it can be quite difficult to see it amongst all the noise and stereotypes we bring with us.
To illustrate this point, Sir Ken cited his own experience interviewing Sir Paul McCartney and George Harrison, both members of a band I think you might know the name of.
During the interview, Sir Ken was surprised to find out that neither of these immensely talented musicians was recognised by their music teacher as ‘top of the class’ – yes, they happened to have the same music teacher in school.
This truly highlights the limitations of our ability to be able to determine what talent looks like (the poor music teacher must really have had to re-evaluate his assessment protocol!).
One of the reasons for this is that we are all inherently bias. While this bias is not conscious, it does affect decisions we make every day.
The ability to categorise or stereotype is an important developmental and evolutionary process that helps humans make sense of the world.
Stereotypes help us make judgements quickly without having to source all pieces of information, but it is detrimental when applied to identifying human talent and hiring decisions.
A basic example; in recruitment and talent acquisition, if successful salespeople in our organisation have all previously had red hair, we might decide that we should only hire red-haired sales assistants.
As human beings, when we try to identify what good ‘looks like’ we concentrate on a few aspects of an individual, and may end up ignoring other important factors that lead to success.
This was further highlighted in a recent Harvard Business Review article, where it was found that 40% of individuals in their study of 1,964 ‘high potentials’ (employees in the top 5% of the organisation) were incorrectly classified as belonging in that category.
In other words, almost half of those identified by managers were not high potentials at all.
42% were below average, with 12% actually being in the bottom ranks with regards to leadership effectiveness.
The point clearly illustrated here is the inability of managers to correctly identify high potentials by not concentrating on the right traits and skills of an individual – they are only human after all.
Sir Ken Robinson spoke in detail about the success of the Beatles and how it was due to the diversity within their group – something that is almost impossible to achieve when allowing subjectivity to guide hiring decisions.
One way of addressing subjectivity and unconscious biases in the hiring process is to make use of data-driven technologies.
Using data to inform hiring decisions means HR can take into account the traits and skills that actually lead to performance, rather than keep focusing on hiring based on subjective stereotypes of success.
At Sapia, we develop predictive models, powered by artificial intelligence, that can predict the likelihood of candidates performing well in organisations based on their behaviour – not on the stereotype they fit into.
Our algorithms and questions are created so that everyone is given an equal opportunity to succeed and be considered, based on what actually drives performance – regardless of age, gender or nationality.
Through adopting AI and data science in the HR field, we can get one step closer to bias-free hiring and increased diversity within organisations.
Whilst AI does take the human out of some part of the hiring decision, the outcomes ensure the human is at the forefront with more opportunities for all.
If you would like to learn more about how AI can impact hiring outcomes in your organisation, feel free to get in touch with our sales team. You can also try it out here for yourself right now!
We can’t hide from reality anymore. Talent needs are shifting overnight, and AI is redefining what it means to work. Traditional talent frameworks are no longer fit for purpose. At Sapia.ai, we believe the future of talent strategy lies in a smarter, fairer, and more adaptive way of defining what great looks like.
Our AI hiring platform is built on the largest proprietary dataset of interview answers globally – we’re a data company at heart, and we’ve seen the power of data-driven people methodology in transforming how organisations hire and retain good talent.
So, when it came to building a new Competency Framework that could be leveraged globally for hiring for any role at any scale, of course, we used a ground-up, data-led methodology that bridges the gap between organisational psychology and AI.
Conventional frameworks are typically crafted through expert interviews and focus groups. While valuable, they tend to be subjective, static, and too slow to keep pace with evolving job demands. As roles become more fluid and technology augments or replaces task-based skills, organisations need a new way to understand the human capabilities that genuinely matter for performance.
We wanted to identify enduring, job-agnostic competencies that reflect what drives success in a modern workplace – capabilities like adaptability, resilience, learning agility, and customer orientation.
(Why competencies and not just skills? Read why here.)
Sapia.ai’s methodology is rooted in the science of human behaviour but powered by cutting-edge AI. We asked two core questions:
The answer to both: yes.
We began with a rich dataset of over 37,000 job descriptions across industries and role types. Using large language models (LLMs) and advanced NLP techniques, we extracted over 200,000 behavioural descriptors. These were distilled down through a four-step process:
This resulted in a refined list of 25 human-centric competencies, each with clear behavioural indicators and practical relevance across a wide range of roles.
Our framework is intelligent, but importantly, it’s adaptive. Organisations can apply this methodology to their own job descriptions to discover custom competencies. This bottom-up, role-data-led approach ensures alignment to real work, not just theoretical models.
And because the framework integrates directly with our AI-powered hiring tools, you get a connected system that brings your talent strategy to life.
Our framework comes to life in the following tools:
Skills alone cannot predict success. Competencies do. As AI continues transforming how we work, Sapia.ai’s Competency Framework offers a scalable, scientific, and fair foundation for hiring and developing the talent of tomorrow.
If you’re a CHRO or Head of Recruitment at an enterprise today, chances are you’ve been inundated with messages about the importance of “skills-based hiring.” LinkedIn’s recent Work Change Report (2025) is full of compelling data: a 140% increase in the rate at which professionals are adding new skills to their profiles since 2022, and a projection that by 2030, 70% of the skills used in most jobs today will have changed.
This is essential reading. But there’s a missed opportunity: the singular focus on “skills” fails to acknowledge the real metric that talent leaders need to be using to future-proof their workforce — competencies.
But skills on their own — even soft ones — are generic, disjointed, and often disconnected from real-world performance. In contrast:
Put simply, competencies answer the all-important question: Can this person apply the right skills, in the right way, at the right time, to deliver results in our environment?
The Work Change Report outlines a future where job titles are fluid, roles evolve quickly, and AI is a constant disruptor. This creates three massive challenges for hiring at scale:
Skills alone don’t tell us whether someone can succeed in a role that will look different 12 months from now. But competencies can. Because they measure not just what a person knows, but how they apply it.
The LinkedIn report highlights a critical insight: organisations now prioritise agility in entry-level hiring. And there’s a good reason for that. With professionals expected to hold twice as many jobs over their careers compared to 15 years ago, adaptability is not just a nice-to-have. It’s core to success.
But you can’t measure agility with a keyword on a CV. You measure it by looking at competencies like:
When you shift the focus away from skills to behavioural competencies that can be defined, observed, and assessed in structured ways, you open yourself up to a much more dynamic and more useful way of managing talent.
To hire effectively at scale, particularly in a technology-driven world of work, talent leaders must shift their lens:
LinkedIn’s data shows that people are learning more skills more quickly than ever. But the real question for talent leaders like you is: Are those skills being applied in ways that drive value? Are we hiring for task proficiency or performance?
The truth is that the organisations that will thrive in an AI-driven, skills-fluid economy aren’t the ones chasing the next hot skill. They’re the ones designing systems to identify, develop and scale competence.
Sapia.ai has developed a comprehensive Competency Framework using a data-driven approach. Download the full paper here.
Every day, we read stories of increased fake or AI-assisted applications. Tools like LazyApply are just one of many flooding the market, driving up applicant volumes to never-before-seen levels.
As an overwhelmed hiring function, how do you find the needle in the haystack without using an army of recruiters to filter through the maze?
At Sapia.ai, we help global enterprises do just that. Many of the world’s most trusted brands, such as Qantas Group, have relied on our hiring platform as a co-pilot for better hiring since 2020.
Our Chat Interview has given millions of candidates a voice they wouldn’t have had – enabling them to share in their own words why they’re the best fit for the role. To find the people who belong with their brands, our customers must trust that their candidates represent themselves. Thus, they want to trust that our AI is analysing real human answers—not answers from a machine.
The Rise of GPT
When ChatGPT went viral in November 2022, we immediately adopted a defensive strategy. We had long been flagging plagiarised candidate responses, but then, we needed to act fast to flag responses using artificially generated content (‘AGC’).
Many companies were in the same position, but Sapia.ai was the only company with a large proprietary data set of interview answers that pre-dated GPT and similar tools: 2.5 billion words written by real humans.
That data enabled us to build a world-first:- an LLM-based AGC detector for text-based interviews, recently upgraded to v2.0 with 99% accuracy and a false positive rate of 1%. An NLP classification model built on Sapia.ai proprietary data that operates across all Sapia.ai chat interviews.
Full Transparency with Candidates
Because we value candidate trust as much as customer trust, we wanted to be transparent with candidates about our ability to detect artificially generated content (AGC). As an LLM, we could identify AGC in real time and warn candidates that we had detected it.
This has had a powerful impact on candidate behaviour. Since our AGC detector went live, we have seen that the real-time flagging acts as a real-time disincentive to use tools like ChatGPT to generate interview responses.
The detector generates a warning if 3 or more answers are flagged as having artificially generated content. The Sapia.ai Chat Interview uses 5 open-ended interview questions for volume hiring roles, such as retail, contact centre, and customer service, and 6 questions for professional roles, such as engineers, data scientists, graduates, etc.
Let’s Take a Closer Look at the Data…
We see that using our AGC detector LLM to communicate live with candidates in the interview flow when artificial content has been detected has a positive effect on deterring candidates from using AI tools to generate their answers.
The rate of AGC use declines from 1 question flagged to 5 questions – raising the flag on one question is generally enough to deter candidates from trying again.
The graph below shows the number of candidates, from a total of almost 2.7m, that used artificially generated content in their answers.
Differences in AGC Usage Rate by Groups
We see no meaningful differences in candidate behaviour based on the job they are applying for or based on geography.
However, we have found differences by gender and ethnicity – for example, men use artificially generated content more than women. The graph below shows the overall completion ratios by gender – for all interviews on the left and for interviews where the number of questions with AGC detected is 5 or more on the right.
Perception of Artificially Generated Content by Hirers.
We’re curious to understand how hirers perceive the use of these tools to assist candidates in a written interview. The creation of the detector was based on the majority of Sapia.ai customers wanting transparency & explainability around the use of these tools by candidates, often because they want to ensure that candidates are using their own words to complete their interviews and they want to avoid wasting time progressing candidates who are not as capable as their chat interview suggests.
However, some of our customers feel that it’s a positive reflection of the candidate, showing that they are using the tools available to them to put their best foot forward.
It’s a mix of perspectives.
Our detector labels it as the use of artificially generated content. It’s up to our customers how they use that information in their decision-making processes.
This concept of having a human in the loop is one of the key dimensions of ethical AI, and we ensure that it is used in every AI-related hiring product we build.
Interested in the science behind it all? Download our published research on developing the AGC detector 👇