Faking or cheating by candidates in the selection process is not a new phenomenon. Depending on the selection method, candidates may fake responses to improve their chances of progressing to the next stage. For instance, some candidates incorporate keywords into their resume to manipulate resume parsers, provide socially desirable responses in a personality test, and utilize impression management in face-to-face interviews. One study found that 70% of a surveyed sample of 1914 employees admitted to lying in their resume, with 76% on cover letters and 80% on interviews.
The rise of generative AI, particularly Large Language Models (LLM) like ChatGPT, has introduced a whole new way for candidates to cheat, posing a serious threat to the fairness and validity of online assessments. Candidates can now generate a whole new resume or use these tools to cheat on online assessments. Especially in asynchronous online chat interviews, the use of AI-generated content (AGC) can seriously impact both the effectiveness and the fairness of the outcomes.
Sapia.ai has been innovating in the space of text chat based structured interviews since 2019. Our flagship AI screening product, Chat Interview™, is used by leading brands to increase the efficiency, fairness, diversity, and candidate experience at the top of the funnel filtering in high-volume recruitment. Candidates’ responses are already scanned for plagiarized content and flagged for the attention of recruiters or hiring managers, letting a human take action. Our work has also shown that only an average of 3% of candidates plagiarize across different role families, showing that the majority of the candidates want to stay authentic.
To combat the latest cheating challenge, researchers at Sapia.ai have developed a novel way to distinguish between interview responses generated by AI, such as ChatGPT, and genuine human-written responses. They leveraged Sapia.ai’s vast proprietary dataset of over 12 million human-written interview answers in training this detector (over 1.0 billion words). The detector capitalizes on a subtle distinction to identify responses that may have been generated by AI rather than the candidate. By observing the probability discrepancy between AI-generated and human-written text after random perturbations (a form of randomly changing words), the detector can identify, with high accuracy, whether a response is AI-generated or not. The AGC detection model proved highly effective, achieving a very high accuracy (ROC-AUC of 94.49%).
Based on the AGC detector outcomes, Sapia.ai researchers analyzed responses from over half a million candidates who participated in online chat-based structured interviews between January and September 2023 to understand the scope of the problem. January 2023 was chosen as the start of the period as ChatPT had already started getting popular by that time. During this period, 1.16% of candidates were flagged for using AGC in all five questions asked in the Chat Interview™, while 20.20% had at least one response likely generated by AI.
Now, detection is only one aspect of the solution. Deterring candidates from using AGC, on the other hand, is the better way to address this problem. To deter candidates from resorting to AI-generated content, we implemented several methods: instructions were added to encourage candidates to write their own answers, and warnings about tracking plagiarism attempts were included. Additionally, the ability to paste responses was disabled, and pop-up warnings were introduced when answers were flagged as using AGC.
With the implemented deterrence methods, we observed a drastic decline in AGC rates, showing that these measures have a tangible impact on curbing cheating. The weekly average of the candidates flagged for all five questions fell as low as 0.20% from a high of 2.4% (a tenfold reduction) prior to implementing the deterrence mechanisms. Further, we observed a clear alignment between the timing of the implementation of deterrents and the reduction in AGC rates, emphasizing the effectiveness of these measures in encouraging candidates to be themselves when completing their Chat Interviewf.
As technology continues to evolve, so do the challenges in maintaining the integrity of job interviews and assessments. The addition of AI-generated content poses a serious threat, but innovative solutions, such as the AGC detector and deterrence methods, show how Sapia.ai effectively de-risks cheating via cutting-edge innovation, in order to maintain the fairness, validity, and reliability of the hiring process.
A new study has just confirmed what many in HR have long suspected: traditional psychometric tests are no longer the gold standard for hiring.
Published in Frontiers in Psychology, the research compared AI-powered, chat-based interviews to traditional assessments, finding that structured, conversational AI interviews significantly reduce social desirability bias, deliver a better candidate experience, and offer a fairer path to talent discovery.
We’ve always believed hiring should be about understanding people and their potential, rather than reducing them to static scores. This latest research validates that approach, signalling to employers what modern, fair and inclusive hiring should look like.
While used for many decades in the absence of a more candidate-first approach, psychometric testing has some fatal flaws.
For starters, these tests rely heavily on self-reporting. Candidates are expected to assess their own traits. Could you truly and honestly rate how conscientious you are, how well you manage stress, or how likely you are to follow rules? Human beings are nuanced, and in high-stakes situations like job applications, most people are answering to impress, which can lead to less-than-honest self-evaluations.
This is known as social desirability bias: a tendency to respond in ways that are perceived as more favourable or acceptable, even if they don’t reflect reality. In other words, traditional assessments often capture a version of the candidate that’s curated for the test, not the person who will show up to work.
Worse still, these assessments can feel cold, transactional, even intimidating. They do little to surface communication skills, adaptability, or real-world problem solving, the things that make someone great at a job. And for many candidates, especially those from underrepresented backgrounds, the format itself can feel exclusionary.
Enter conversational AI.
Organisations have been using chat-based interviews to assess talent since before 2018, and they offer a distinctly different approach.
Rather than asking candidates to rate themselves on abstract traits, they invite them into a structured, open-ended conversation. This creates space for candidates to share stories, explain their thinking, and demonstrate how they communicate and solve problems.
The format reduces stress and pressure because it feels more like messaging than testing. Candidates can be more authentic, and their responses have been proven to reveal personality traits, values, and competencies in a context that mirrors honest workplace communication.
Importantly, every candidate receives the same questions, evaluated against the same objective, explainable framework. These interviews are structured by design, evaluated by AI models like Sapia.ai’s InterviewBERT, and built on deep language analysis. That means better data, richer insights, and a process that works at scale without compromising fairness.
The new study, published in Frontiers in Psychology, put AI-powered, chat-based interviews head-to-head with traditional psychometric assessments, and the results were striking.
One of the most significant takeaways was that candidates are less likely to “fake good” in chat interviews. The study found that AI-led conversations reduce social desirability bias, giving a more honest, unfiltered view of how people think and express themselves. That’s because, unlike multiple-choice questionnaires, chat-based assessments don’t offer obvious “right” answers – it’s on the candidate to express themselves authentically and not guess teh answer they think they would be rewarded for.
The research also confirmed what our candidate feedback has shown for years: people actually enjoy this kind of assessment. Participants rated the chat interviews as more engaging, less stressful, and more respectful of their individuality. In a hiring landscape where candidate experience is make-or-break, this matters.
And while traditional psychometric tests still show higher predictive validity in isolated lab conditions, the researchers were clear: real-world hiring decisions can’t be reduced to prediction alone. Fairness, transparency, and experience matter just as much, often more, when building trust and attracting top talent.
Sapia.ai was spotlighted in the study as a leader in this space, with our InterviewBERT model recognised for its ability to interpret candidate responses in a way that’s explainable, responsible, and grounded in science.
Today, hiring has to be about earning trust and empowering candidates to show up as their full selves, and having a voice in the process.
Traditional assessments often strip candidates of agency. They’re asked to conform, perform, and second-guess what the “right” answer might be. Chat-based interviews flip that dynamic. By inviting candidates into an open conversation, they offer something rare in hiring: autonomy. Candidates can tell their story, explain their thinking, and share how they approach real-world challenges, all in their own words.
This signals respect from the employer. It says: We trust you to show us who you are.
Hiring should be a two-way street – a long-held belief we’ve had, now backed by peer-reviewed science. The new research confirms that AI-led interviews can reduce bias, enhance fairness, and give candidates control over how they’re seen and evaluated.
It’s time for a new way to map progress in AI adoption, and pilots are not it.
Over the past year, I’ve been lucky enough to see inside dozens of enterprise AI programs. As a CEO, founder, and recently, judge in the inaugural Australian Financial Review AI Awards.
And here’s what struck me:
Despite the hype, we still don’t have a shared language for AI maturity in business.
Some companies are racing ahead. Others are still building slide decks. But the real issue is that even the orgs that are “doing AI” often don’t know what good looks like.
The most successful AI adoption strategy does not have you buying the hottest Gen AI tool or spinning up a chatbot to solve one use case. What it should do is build organisational capability in AI ethics, AI governance, data, design, and most of all, leadership.
It’s time we introduced a real AI Maturity Model. Not a checklist. A considered progression model. Something that recognises where your organisation is today and what needs to evolve next, safely, responsibly, and strategically.
Here’s an early sketch based on what I’ve seen:
AI is a capability.And like any capability, it needs time, structure, investment, and a map.
If you’re an HR leader, CIO, or enterprise buyer, and you’re trying to separate the real from the theatre, maturity thinking is your edge.
Let’s stop asking, “Who’s using AI?”
And start asking: “How mature is our AI practice and what’s the next step?”
I’m working on a more complete model now, based on what I’ve seen in Australia, the UK, and across our customer base. If you’re thinking about this too, I’d love to hear from you.
For too long, AI in hiring has been a black box. It promises speed, fairness, and efficiency, but rarely shows its work.
That era is ending.
“AI hiring should never feel like a mystery. Transparency builds trust, and trust drives adoption.”
At Sapia.ai, we’ve always worked to provide transparency to our customers. Whether with explainable scores, understandable AI models, or by sharing ROI data regularly, it’s a founding principle on which we build all of our products.
Now, with Discover Insights, transparency is embedded into our user experience. And it’s giving TA leaders the clarity to lead with confidence.
Transparency Is the New Talent Advantage
Candidates expect fairness. Executives demand ROI. Boards want compliance. Transparency delivers all three.
Even visionary Talent Leaders can find it difficult to move beyond managing processes to driving strategy without the right data. Discover Insights changes that.
“When talent leaders can see what’s working (and why) they can stop defending their strategy and start owning it.”
What it is: The median time between application and hire.
Why it matters: This is your speedometer. A sharp view of how long hiring takes and how that varies by cohort, role, or team helps you identify delays and prove efficiency gains to leadership.
Faster time to hire = faster access to revenue-driving talent.
What it is: Satisfaction scores, brand advocacy measures, and unfiltered candidate comments.
Why it matters: Many platforms track satisfaction. Sapia.ai’s Discover Insights takes it further, measuring whether that satisfaction translates into employer and consumer brand advocacy.
And with verbatim feedback collected at scale, talent leaders don’t have to guess how candidates feel. They can read it, learn from it, and take action.
You don’t just measure experience. You understand it in the candidates’ own words.
What it is: The percentage of candidates who exit the hiring process at different stages, and how to spot why.
Why it matters: Understanding drop-off points lets teams fix friction quickly. Embedding automation early in the funnel reduces recruiter workload and elevates top candidates, getting them talking to your hiring teams faster.
Assessment completion benchmarks in volume hiring range between 60–80%, but with a mobile-first, chat-based format like Sapia.ai’s, clients often exceed that.
Optimising your funnel isn’t about doing more. It’s about doing smarter, with less effort and better outcomes.
What it is: The percentage of completed applications that result in a hire.
Why it matters: This is your funnel efficiency score. A high yield means your sourcing, screening, and selection are aligned. A low one? There’s leakage, misfit, or missed opportunity.
Hiring yield signals funnel health, recruiter performance, and candidate-process fit.
What it is: Insights into how candidate scores are distributed, and whether responses appear copied or AI-generated.
Why it matters: In high-volume hiring, a normal distribution of scores suggests your assessment is calibrated fairly. If it’s skewed too far left or right, it could be too hard or too easy, and that affects trust.
Add in answer originality, and you can track engagement integrity, protecting both your process and your brand.
To effectively lead, you need more than simply tracking; you need insights enabling action.
When you can see how AI impacts every part of your hiring, from recruiter productivity to candidate sentiment to untapped talent, you lead with insight, not assumption. And that’s how TA earns a seat at the strategy table.