Do you wish you could harness the very best attributes of your people and just hire more of them, quickly, without bias? Do you spend more time recruiting than you would like? Have you ever gone against your better judgement and hired hastily only to discover the whole process has cost your business greatly?
The fact is, in retail, staff turnover is a whopping 2.5x higher than that of other industries. And if every bad hire costs your business 1.5x their annual salary, the costs mount up. Not to mention the lost sales from not having a full team on the store floor every day … bad hire costs, add up – fast.
You’ll love this. Built on robust psychological and data science, PredictiveHire’s technology compares tens of thousands of data points specifically attained from retail staff based around the world.
Your applicants will be compared to this powerful data to predict their likelihood to stay with you – creating really powerful candidate shortlists. The results speak for themselves.
Simon Amesbury, Superdry’s Resourcing Manager sums it up by saying:
“PredictiveHire ticked all the boxes: Cost savings. Time efficiencies throughout the process – less time on screening, sifting, interviewing, assessing, the list continues. A simpler life for store managers by speeding up shortlisting. And a way to boost the number of long-lasting, productive staff.”
Simon says: “Start now. The savings are there to be taken and the benefits are yours to gain!”
To get started and experience smarter hiring with no upfront costs, contact us for a discussion on how PredictiveHire can help you resolve your retail hiring issues.
Suggested Reading
An average time-to-hire of 40 days. Hiring costs in excess of $2,000 per candidate. An average turnover rate of 60-70%.
The challenges of hourly recruitment in the retail industry have been well-documented.
Despite this, many of the largest companies persist with old-school recruitment processes.
Given the break-neck pace and scale of the industry, it’s hard to diagnose and fix the problem.
Understandably, many HR leaders have been quick to layer on technology solutions that seem to make things easier; in actuality, these tech solutions have added complexity, making efficiency gains difficult and actionable insights hard to find.
Where recruitment is concerned, a HR tech stack tends to look like this: an unwieldy ATS, often coupled with a conversational AI or scheduling tool.
This stack is implemented across a decentralized system – hundreds of stores across the country – resulting in a situation where hiring managers are forced to use systems they don’t understand and don’t like.
The bottom line is this: Retail companies are overstacked, overworked, and need to adopt different solutions to old problems.
One of the biggest challenges with recruitment at major retail companies is high turnover rates. Retail staff members move fast and often, and have a high likelihood of migrating to competing businesses.
This is partially a nature-of-the-beast problem, but if we better understand what makes people tick, we can better match them to the roles at which they’re likely to succeed, and therefore keep them longer.
For example, we know that the best retail cashiers are high in extraversion. They’re energized by being around people, have good interpersonal skills, and have a lower likelihood of experiencing negative emotion while on the job.
It makes sense, then, to prioritize extraversion when matching candidates to the role of cashier. That’s a personality trait – with attendant soft skills – that will predict success for that role.
When people are matched to the job for which they are best suited, they’ll experience higher levels of purpose and satisfaction. It’s obvious why – the daily activities will invigorate rather than drain them. People who have purpose stay longer.
Therefore, if you accurately match soft skills to roles, you’ll reduce churn. Our AI Smart Chat Interviewer is really good at this: Across the board, our skill-matching power reduces non-regrettable churn by a minimum of 25%.
If you’re keen to get started measuring soft skills, download our HEXACO job interview rubric. It features more than 20 interview questions designed by our personality psychologists to assess the skills of candidates that come your way. It will even help you figure out what soft skills are best for you based on the needs and values of your organization.
Chances are, when your employees or candidates leave, they’re probably staying within the industry – and that means they’re likely going to your competitors. It’s 2023, and the stock-standard advice would be to offer higher wages and perks.
That’s not always feasible, and besides, there’s no guarantee that doing so will markedly reduce the threat of poaching and abandonment. Money is important, but it doesn’t trump purpose and belonging.
The key to better employer branding is a system for active listening. Find out what your people, be they employees or candidates, think. Ask them often. It’s important to do this at the onboarding stage, but it should continue through to the point of highest churn – the six-month mark.
Our joint report with Aptitude Research uncovered some interesting data on the importance of two-way feedback between candidates and employers.
Gathering and acting on mutual feedback:
An NPS (Net Performer Score) framework is a good place to start. How likely are you to recommend our company to a friend or colleague?
The NPS tracking question is easily configurable and embeddable into automated emails, meaning it can be set up through your ATS with little additional work.
When you begin to analyze the data, keep things simple: Dump the data into a spreadsheet, and look at your average numbers. If your score is below 0, you’ve got work to do – if it’s 0 to +30, you’re doing well. 30+ and over, well done!
(If you’re reading this, it’s probably not likely that you’ll get a 30+ score on the first go-round. That’s okay – the goal is to find out how much work you’ve got to do.)
The benefit of benchmarking NPS is that it gives your business a single, easy-to-understand proxy for employee engagement. Once you’ve got the number, you can start to make small changes and see how that affects the overall number.
We hear it all the time: Sourcing is a big problem. When we ask customers about their current processes, however, a common problem emerges: We don’t really know how many people we’re losing from our recruitment funnel, and why.
This presents a great opportunity: Often, improving an application process means removing things, rather than adding them.
Conventional wisdom tells us that the longer your application and interview process goes on, the higher your dropout rate will be. But that’s a generalized issue – it tells you nothing about how to fix the problem, beyond simply making it shorter. You need specific, localized data to diagnose and fix your leakage spots.
Data from a 2022 Aptitude Research report on key interviewing trends found that candidates tend to drop out at the following stages, in the following proportions:
Let’s say that you had 100 visitors to your careers (or job ad) page, and 20 of them completed the first-step application form on that page. You’ve lost 80% of your possible pool right there. Not great, but at least you know – now you can examine that page to uncover possible issues preventing conversion.
Is the page too long? Does it have too much text? Is the ‘apply’ button clearly shown? Is the form too long, requiring too much information to fill out? Are your perks/EVP attributes clearly displayed?
We’ve got an in-depth guide for measuring and improving your abandonment rate here.
Candidate experience: Everybody’s talking about it, few companies are actively investing in it.
According to a Sapia-sponsored Aptitude Research report from earlier this year, 68% of companies admit they have no plans to address the interview portion of their candidate experience throughout 2022 and 2023. Despite this, 50% of these companies know they’re losing talent due to their application and interview processes. What’s more, according to Forbes, companies that prioritize candidate experience can see their average quality-of-hire improve by 70%.
Why the unwillingness to address such an important facet of recruitment? In most cases, the teams responsible for enacting change to candidate experience are steeped in the everyday throes of talent acquisition, and don’t have time right now to examine their processes. Statistically speaking, this is probably where you’re at. Totally understandable; the 2023 labor market is tough. If your house is on fire, you’re probably not focussed on how well you treat the visitors at your doorstep.
Recently, on our Pink Squirrels! podcast, we sat down with Lars van Wieren, CEO at Starred, a candidate experience measurement tool. Lars offered some practical tips on getting started with candidate experience: Benchmarking it, measuring it at different stages of the process, and setting your business up to review and act on the findings.
As the saying goes, what gets measured, gets managed. Lars recommends starting with a basic benchmark for your candidate experience. This need not be difficult, and you don’t necessarily need a fancy tool to start gathering these data.
Simply ask your candidates: How likely are you to recommend our company to a friend or colleague? This is, in essence, a Net Performer Score (NPS) question, and the scale (1 to 10) should reflect that.
Ideally, you should be gathering feedback on your candidate experience at each stage of the application process, but to begin with, ask the question at the very end. And to get the best, least-biased data, you need to ask all applicants whether or not they’ve been shortlisted or hired – if you only ask those who have been shortlisted, or the few people who have been successful, you’re likely to get magnanimous results that don’t reflect your true candidate experience.
The NPS tracking question is easily configurable and embeddable into automated emails, meaning it can be set up through your ATS with little additional work.
When you begin to analyze the data, keep things simple: Dump the data into a spreadsheet, and look at your average numbers. If your score is below 0, you’ve got work to do – if it’s 0 to +30, you’re doing well. 30+ and over, well done!
(If you’re reading this, it’s probably not likely that you’ll get a 30+ score on the first go-round. That’s okay – the goal is to find out how much work you’ve got to do.)
The benefit of benchmarking NPS is that it gives your business a single, easy-to-understand proxy for the health of your candidate experience. Once you’ve got the number, you can start to make small changes to your application experience and see how that affects the overall number.
For example, you might consider making the following changes to improve your candidate experience:
At the same time, you might consider looking at your candidate abandonment rate – we’ve got a post on measuring and improving it here. Candidate experience scores and abandonment rates are almost always linked. Improve one, you improve the other.
Our joint report with Aptitude Research uncovered some interesting data on the importance of two-way feedback between candidates and employers.
Gathering and acting on mutual feedback:
Feedback is critical. And, to make it as accurate and indicative as possible, your feedback should ideally be gathered at each stage of the application process: Application, screening, interviewing, assessment, offer, and rejection.
By doing this, you’ll know exactly where your candidate experience is lacking – and you can make fast, effective changes.
Multi-step candidate experience feedback may not be easy to do with your current setup, but it is relatively simple to configure if your ATS/chosen software solution has the capability.
Generally speaking, the task of improving candidate experience is that of your entire talent acquisition or recruitment team. But it’s a good idea to appoint an internal candidate experience champion – someone who is responsible for collating the benchmark data and regularly reporting on it.
What’s the reporting cadence? Depends on the amount of applications you have, and the length of your application process. A monthly score update check-in works best for most. Monthly measurement will likely give you an insightful trendline.
While the task of improving candidate experience is never done, it needn’t require an overhaul to your entire recruitment business. Start small, make iterative improvements over time, and focus on making at least one more candidate smile.
In Australia, we have seen large numbers of staff getting underpaid in some sectors, such as retail and hospitality. For some of these businesses, it’s precipitated the collapse of the company. For others, it’s impacted their share price as these businesses make provisions for back pay in the hundreds of millions of dollars.
Globally – the coronavirus impacts on HR more than any other function. HR has to lead on managing health and safety for employees, guide organisations on remote working, support the CEO and leaders on their internal communications and public response to coronavirus, and a lot more.
Apart from those current risks garnering a lot of media attention, what business risks really ought to matter to HR?
Ask a CEO of a sales/service business what they believe carries more risk to their bottom line – increasing turnover coupled with a high cost to hire, or a declining engagement score measured from a survey?
If you are hiring just 100 people a year, you can expect to LOSE 80 DAYS of work capacity to recruitment. Using automation tools like ours reduces that by 80% giving back 504 hours to the business. Click here to see case studies on time savings from using PredictiveHire.
1. Cost to hire – which should be the direct (the recruitment team for example) and indirect costs (the opportunity costs of all the people involved in recruitment)
2. Time to hire for any organisation that relies on frontline staff to deliver value- sales or customer service
3. Turnover especially early churn and non-regrettable churn, which is a good objective measure for quality of hire
4. The percentage of promotions within, only if you use hard objective data to make those decisions
5. Most of all, whether these metrics are going in the right direction quarter on quarter
Suggested Reading:
https://sapia.ai/blog/to-ai-or-not-to-ai/