Back

Enabling data-driven hiring decisions

The marriage of behavioural science, data science and AI technology

The introduction of artificial intelligence (AI) technologies into the world of HR and recruitment is not just an idea anymore, it is a reality, specifically focusing on AI for HR. Neural networks, machine learning, and natural language processing are all being introduced into different areas of HR, marking a significant shift towards integrating AI for HR purposes.

These developments contribute to the function’s increased accessibility to data-driven insights and analytics, enabling better-informed people decisions.

In recruitment and talent acquisition, AI technologies have the potential to make a significant impact by identifying candidates who can perform well in individual business environments.

However, pre-hire assessment is a complex area, and without incorporating validated behavioural science we only end up with a 2D view – instead of the 3D view we actually wanted. This is why the marriage of data, computer and behavioural sciences is essential.

By bringing together organisational psychologists, data scientists and computer scientists we truly leverage the power of artificial intelligence – and change the way candidates are recruited. It takes the recruitment process beyond the technical excellence necessary to collect and report on data and insights.

By merging these scientific areas we get:

  • Computer science expertise providing the critical ‘how’ for collecting quality data.
  • Data science brilliance then revealing the ‘what’ of unseen connections within that data.
  • Well-constructed behavioural science explaining the ‘why’ behind those connections.

Through the combination of all three disciplines, we can access a whole extra world of meaning, enabling us to get closer to the core of what’s happening in organisations.

Behavioural science is the key to success

A recent Industrial & Organisational Psychology article pointed to the disruption taking place in the talent identification industry through new digital technologies. The authors noted that although big data is attractive, the data is often thrown together and interrogated using data science until correlations are found. This has become known as ‘dustbowl empiricism’.

My favourite for this at the moment has to be the strong correlation between the number of people who have drowned by falling in a pool, and the number of films Nicolas Cage has appeared in any given year. Who knew how dangerous Nicolas Cage could really be?

Despite the evident danger of watching Nicolas Cage films (particularly near water), I believe there is more value in explaining behaviour than in just predicting it.

For example, is there a correlation between owning a certain type of car and being a high performer?

Perhaps, but I don’t think to look for the best candidates in car parks is very useful. After all, people change cars, and so might the correlations change between particular car models and performance. To cite another famous example, as often as people change their eating preferences, so goes the link between curly fries and intelligence.

Understanding why data is linked can suggest better ways to improve performance than just updating the carpool or changing the canteen menu.

Linking a vehicle preference to well-established behavioural science may suggest that a client considers how a candidate is innovative elsewhere in their lives, such as in their adoption of other new technologies. Or they may look for other ways the candidate demonstrates a penchant for reliability (perhaps through previous work choices).

The scientific approach

This is where organisational psychologists come in.

They have an intimate knowledge of the theories that can help interpret and explain the links between personal attributes and performance, or other variables that matter. They know how to use these theories to solve real problems and they know how to design studies and measurement tools to ensure that scientific knowledge is applied correctly in an organisational setting.

I learned a lot of organisational psychology models and theories during my Masters and PhD studies. We focused on these and the research behind them when I taught MBA and Master of Organisational Psychology programs – sometimes noting gaps in current models and theories – and designing studies to help extend or debunk what we knew.

While completing my MBA and later in a corporate role, I became skilled in applying that knowledge to the problems managers and executives face.

As an organisational psychologist I often find that it isn’t just knowing behavioural science that matters, it is knowing the behavioural science detail to understand what is most relevant for a role or business problem.

For example, consider sales performance.

Thanks to the popularity of some psychometric instruments, ‘extroverted’ or ‘introverted’ are understood as reliable ways to describe elements of a person’s personality, and many people are convinced that being extroverted is important in a sales role.

However, the research on sales performance says otherwise. An International Journal of Selection and Assessment article shows that across a range of studies there isn’t a strong link between ‘extraversion’ (broadly) and sales performance, despite this being such a common view.

Knowing the detail matters here.

A broad description of extraversion may not do a candidate justice, particularly when we’re focused on understanding performance in a particular role.

Instead, we might be interested in a candidate’s level of dominance, their sociability, what they would be like in a group setting, or presenting to a group to make a sale.

Perhaps we’d be interested in whether they are independent, adventurous, or ambitious, all of which (as potential elements of extroversion) may have different implications for sales performance.

We might also focus on the particular nature of the sales role – many roles are becoming more formalised and structured, with down-to-the-minute journey plans and call times. No wonder then that the Journal of Selection and Assessment article found another personality factor, conscientiousness, to be relevant for predicting sales performance.

The business focus of pre-employment assessments

It’s the acceptance of how important behavioural science is to the new world of AI that has led me to Sapia, where we believe all people decisions should be based on science, data and analytics – not just gut feeling.

Sapia focuses on the things that matter.

We use validated behavioural science to build predictive models, centred on the issues your business wishes to address and their corresponding KPIs. The predictive model is based on your workforce data so it’s unique to your organisation, maximising predictive accuracy while also prioritising the candidate experience.

We use various techniques, including training a neural network to identify what drives performance in the organisation, based on the data we collect. We build our algorithms to achieve accurate predictions from the start, and the model improves over time through machine learning.

We’re now at a point where we can use behavioural science, data science and computer technology to understand the intricate links between candidate information and performance data. With that we can help reduce bias and level the candidate playing field and give managers a 3D view of their candidates, to enable them to make the best people decisions.

Dr. Elliot Wood is a registered organisational psychologist with a bachelor’s degree, various master’s degrees and a PhD in the field. He spent 12 years in academia, teaching master’s-level organisational psychology; supervising post-graduate research; and working on research grants and consulting projects. He then moved into organisational development–focused consulting in Australia and Asia, followed by an internal talent role in a multinational brewer. He is now Chief Organisational Psychologist at Sapia.

References

Tomas Chamorro-Premuzic, Dave Winsborough, Ryne Sherman and Robert Hogan, Industrial & Organisational Psychology,New Talent Signals: Shiny New Objects or a Brave New World?’

Murray R. Barrick, Michael K. Mount, Timothy A. Judge, International Journal of Selection and Assessment, ‘Personality and Performance at the Beginning of the New Millennium: What Do We Know and Where Do We Go Next?’

 


Blog

Reinventing the Competency Framework: A Data-Driven Approach for the AI Era

We can’t hide from reality anymore. Talent needs are shifting overnight, and AI is redefining what it means to work. Traditional talent frameworks are no longer fit for purpose. At Sapia.ai, we believe the future of talent strategy lies in a smarter, fairer, and more adaptive way of defining what great looks like. 

Our AI hiring platform is built on the largest proprietary dataset of interview answers globally – we’re a data company at heart, and we’ve seen the power of data-driven people methodology in transforming how organisations hire and retain good talent.  

So, when it came to building a new Competency Framework that could be leveraged globally for hiring for any role at any scale, of course, we used a ground-up, data-led methodology that bridges the gap between organisational psychology and AI.

Why Rethink Competency Frameworks?

Conventional frameworks are typically crafted through expert interviews and focus groups. While valuable, they tend to be subjective, static, and too slow to keep pace with evolving job demands. As roles become more fluid and technology augments or replaces task-based skills, organisations need a new way to understand the human capabilities that genuinely matter for performance.

We wanted to identify enduring, job-agnostic competencies that reflect what drives success in a modern workplace – capabilities like adaptability, resilience, learning agility, and customer orientation.

(Why competencies and not just skills? Read why here.)

Our Approach: Where AI Meets I/O Psychology

Sapia.ai’s methodology is rooted in the science of human behaviour but powered by cutting-edge AI. We asked two core questions:

  1. Can we make competency discovery agile, scalable, and evidence-based?
  2. Can we use AI to automate the process without losing the rigour of traditional psychology?

The answer to both: yes.

We began with a rich dataset of over 37,000 job descriptions across industries and role types. Using large language models (LLMs) and advanced NLP techniques, we extracted over 200,000 behavioural descriptors. These were distilled down through a four-step process:

  1. Behavioural Descriptor Extraction
  2. Clustering and Labeling
  3. Cluster Analysis by I/O Psychologists
  4. Thematic Categorisation and Definition of Competencies

This resulted in a refined list of 25 human-centric competencies, each with clear behavioural indicators and practical relevance across a wide range of roles.

Built to Scale. Built to Adapt.

Our framework is intelligent, but importantly, it’s adaptive. Organisations can apply this methodology to their own job descriptions to discover custom competencies. This bottom-up, role-data-led approach ensures alignment to real work, not just theoretical models.

And because the framework integrates directly with our AI-powered hiring tools, you get a connected system that brings your talent strategy to life. 

Our framework comes to life in the following tools: 

  • Job Analyser – Starting with a job description, it creates a unique competency profile for each role to build tailored structured interviews in seconds.
  • Structured Chat-based Interviews that assess candidates’ responses according to the competency profile for consistent candidate assessment.
  • Talent Insights Reports from every interview with deep reasoning and explainability for fair and objective hiring decisions.
  • Phai Career Coach for internal mobility and employee growth that considers their competency strengths and career aspirations.

The Future of Talent Acquisition & Development is Competency-First

Skills alone cannot predict success. Competencies do. As AI continues transforming how we work, Sapia.ai’s Competency Framework offers a scalable, scientific, and fair foundation for hiring and developing the talent of tomorrow.

Want to see how it works? Download the full framework.


 

Read Online
Blog

It’s Time to Stop Hiring for Skills, and Start Hiring for Competencies

If you’re a CHRO or Head of Recruitment at an enterprise today, chances are you’ve been inundated with messages about the importance of “skills-based hiring.” LinkedIn’s recent Work Change Report (2025) is full of compelling data: a 140% increase in the rate at which professionals are adding new skills to their profiles since 2022, and a projection that by 2030, 70% of the skills used in most jobs today will have changed.

This is essential reading. But there’s a missed opportunity: the singular focus on “skills” fails to acknowledge the real metric that talent leaders need to be using to future-proof their workforce — competencies.

Skills vs Competencies: The Crucial Distinction

  • Skills are task-specific capabilities. Think Python programming, Excel, or even negotiation.

  • Soft skills refer to interpersonal or behavioural qualities like adaptability, communication, and resilience.

But skills on their own — even soft ones — are generic, disjointed, and often disconnected from real-world performance. In contrast:

  • Competencies are clusters of skills, knowledge, behaviours and abilities that are observable, measurable, and context-specific.

Put simply, competencies answer the all-important question: Can this person apply the right skills, in the right way, at the right time, to deliver results in our environment?

Why Competencies Matter More Than Ever

The Work Change Report outlines a future where job titles are fluid, roles evolve quickly, and AI is a constant disruptor. This creates three massive challenges for hiring at scale:

  1. Roles are changing faster than static skill frameworks can keep up

  2. Job candidates may have non-linear, cross-functional backgrounds

  3. The shelf-life of technical skills is shrinking rapidly

Skills alone don’t tell us whether someone can succeed in a role that will look different 12 months from now. But competencies can. Because they measure not just what a person knows, but how they apply it.

Adaptive Talent: The New Competitive Advantage

The LinkedIn report highlights a critical insight: organisations now prioritise agility in entry-level hiring. And there’s a good reason for that. With professionals expected to hold twice as many jobs over their careers compared to 15 years ago, adaptability is not just a nice-to-have. It’s core to success.

But you can’t measure agility with a keyword on a CV. You measure it by looking at competencies like:

  • Learning agility

  • Change resilience

  • Cross-functional collaboration

  • Problem-solving in ambiguous contexts

When you shift the focus away from skills to behavioural competencies that can be defined, observed, and assessed in structured ways, you open yourself up to a much more dynamic and more useful way of managing talent.

Building a Competency-Based Talent Framework

To hire effectively at scale, particularly in a technology-driven world of work, talent leaders must shift their lens:

  1. Define Role-Specific Competencies: Move beyond job descriptions based on qualifications or vague skill sets. Break roles down into measurable competencies that reflect current and emerging performance expectations. This step is crucial for organisations to be able to accurately assess role-fit in the next stages. Sapia.ai does this automatically, taking job descriptions and building role-specific competency models in seconds.

  2. Assess Competencies Fairly and Objectively: Use structured behavioural interviews, ideally at scale. These provide a much more accurate picture of a candidate’s readiness than self-reported skills or credentials. Sapia.ai’s AI powered interviews enable competency assessment, at scale.

  3. Build Pathways for Development and Internal Mobility: A competency framework makes it easier to identify transferable strengths, development gaps, and future-fit potential. It gives employees clarity on how to grow within the business. Using an AI-powered coach can help ensure that talent is being continuously developed against the organisation’s competency framework.

The Future of Work Requires Depth, Not Just Breadth

LinkedIn’s data shows that people are learning more skills more quickly than ever. But the real question for talent leaders like you is: Are those skills being applied in ways that drive value? Are we hiring for task proficiency or performance?

The truth is that the organisations that will thrive in an AI-driven, skills-fluid economy aren’t the ones chasing the next hot skill. They’re the ones designing systems to identify, develop and scale competence.

Keen to Shift to Competencies, but Lacking a Framework? 

Sapia.ai has developed a comprehensive Competency Framework using a data-driven approach. Download the full paper here.


 

Read Online
Blog

The AGC Debate: Are AI-Written Interview Answers a Red Flag or Smart Strategy?

Every day, we read stories of increased fake or AI-assisted applications. Tools like LazyApply are just one of many flooding the market, driving up applicant volumes to never-before-seen levels. 

As an overwhelmed hiring function, how do you find the needle in the haystack without using an army of recruiters to filter through the maze?

At Sapia.ai, we help global enterprises do just that. Many of the world’s most trusted brands, such as Qantas Group, have relied on our hiring platform as a co-pilot for better hiring since 2020. 

Our Chat Interview has given millions of candidates a voice they wouldn’t have had – enabling them to share in their own words why they’re the best fit for the role. To find the people who belong with their brands, our customers must trust that their candidates represent themselves. Thus, they want to trust that our AI is analysing real human answers—not answers from a machine.  

The Rise of GPT 

When ChatGPT went viral in November 2022, we immediately adopted a defensive strategy. We had long been flagging plagiarised candidate responses, but then, we needed to act fast to flag responses using artificially generated content (‘AGC’). 

Many companies were in the same position, but Sapia.ai was the only company with a large proprietary data set of interview answers that pre-dated GPT and similar tools: 2.5 billion words written by real humans. 

That data enabled us to build a world-first:- an LLM-based AGC detector for text-based interviews, recently upgraded to v2.0 with 99% accuracy and a false positive rate of 1%. An NLP classification model built on Sapia.ai proprietary data that operates across all Sapia.ai chat interviews.

Full Transparency with Candidates

Because we value candidate trust as much as customer trust, we wanted to be transparent with candidates about our ability to detect artificially generated content (AGC). As an LLM, we could identify AGC in real time and warn candidates that we had detected it. 

This has had a powerful impact on candidate behaviour. Since our AGC detector went live, we have seen that the real-time flagging acts as a real-time disincentive to use tools like ChatGPT to generate interview responses. 

The detector generates a warning if 3 or more answers are flagged as having artificially generated content. The Sapia.ai Chat Interview uses 5 open-ended interview questions for volume hiring roles, such as retail, contact centre, and customer service, and 6 questions for professional roles, such as engineers, data scientists, graduates, etc.

Let’s Take a Closer Look at the Data… 

We see that using our AGC detector LLM to communicate live with candidates in the interview flow when artificial content has been detected has a positive effect on deterring candidates from using AI tools to generate their answers. 

The rate of AGC use declines from 1 question flagged to 5 questions – raising the flag on one question is generally enough to deter candidates from trying again. 

The graph below shows the number of candidates, from a total of almost 2.7m, that used artificially generated content in their answers.  

Differences in AGC Usage Rate by Groups 

We see no meaningful differences in candidate behaviour based on the job they are applying for or based on geography.

However, we have found differences by gender and ethnicity – for example, men use artificially generated content more than women. The graph below shows the overall completion ratios by gender – for all interviews on the left and for interviews where the number of questions with AGC detected is 5 or more on the right. 

Perception of Artificially Generated Content by Hirers. 

We’re curious to understand how hirers perceive the use of these tools to assist candidates in a written interview. The creation of the detector was based on the majority of Sapia.ai customers wanting transparency & explainability around the use of these tools by candidates, often because they want to ensure that candidates are using their own words to complete their interviews and they want to avoid wasting time progressing candidates who are not as capable as their chat interview suggests.  

However, some of our customers feel that it’s a positive reflection of the candidate, showing that they are using the tools available to them to put their best foot forward. 

It’s a mix of perspectives. 

Our detector labels it as the use of artificially generated content. It’s up to our customers how they use that information in their decision-making processes. 

This concept of having a human in the loop is one of the key dimensions of ethical AI, and we ensure that it is used in every AI-related hiring product we build. 

Interested in the science behind it all? Download our published research on developing the AGC detector 👇

Research Paper Download: AI Generated Content in Online Text-based Structured Interviews

Read Online