Part of our job here in the workforce science team is to keep up to date with new research in Organisational Psychology. This might sound boring to some people – but we love it!
As massive nerds, we find nothing more exciting than seeing new progress in our field. This time, our knowledge-cravings took us all the way from Melbourne to Orlando, Florida, to this year’s SIOP conference.
An important issue within our field – and within the US in general – is adverse impact and hiring for diversity.
We are passionate about ensuring people are not discriminated against in selection methods, whether it is because of gender, age, ethnic background or sexual orientation.
(Actually, this is also one of the key values and driving forces behind why Paul, our CEO, founded Sapia.)
One key topic at this year’s conference was the combination of data science and behavioural science. Specifically, there were a lot of discussions around how these sciences can work together to minimise bias and discrimination in the hiring process.
To give you some background as to why this is important, let’s explore what a standard selection process might look like today.
If you ever have applied for a job, it is likely you have gone through a process involving;
As mentioned, pretty standard. This is typically the different pieces of information that recruiters would use to assess your suitability for a role.
However, from an adverse impact perspective, this isn’t good enough.
The reason is that humans are biased (there are a plethora of studies out there proving this). And even if our biases (in most cases) are unconscious, we still base discriminatory decisions on them.
A research study by The Ladders found that recruiters only spend about 6 seconds looking at a resume. Using gaze-tracking technology they identified that recruiters spend almost 80% of this time on only a few items:
To most people that would seem reasonable. Our previous professional and educational experience should be predictive of future performance, right?
If you agree, it might surprise you that past job experience only has a 0.13 validity when used to predict performance (and your name certainly has nothing to do with how you would perform).
So not only is the information recruiters look at not actually predictive of performance, but it also has the potential to adversely impact minorities.
In the 1970s, the Toronto Symphony Orchestra was composed of almost all white males. A few years later, they caught on to their diversity issue and decided to do something about it.
One initiative was to introduce ‘blind auditions’. Individuals would perform from behind a screen, making the assessors ‘blind’ to who was performing. This meant that the performance was in the center of the assessment, not the individual.
The result?
The proportion of women within the orchestra increased from 5% to 35%.
Individuals within racial minority groups are also discriminated against based on resumes.
Research found that applicants with ‘traditional’ english names received an interview for every 1/10 resumes sent out. This is in contrast to applicants with African-American names, who only got an interview for every 1/15 resumes.
As the resume is one of the most common determinators of whether an applicant progresses to the next stage – it is alarming that this method can adversely impact minority groups.
Luckily, some progress is definitely being made to combat this.
Different techniques, for example blind recruitment, are increasing in popularity. Some progressive businesses have leap-frogged and started using artificial intelligence (AI) driven algorithms as a first step in their assessment process.
When using AI, it is very important to understand that the data put into the algorithm is of great importance. AI is often touted as the solution to the biases inherent in our thinking, but if not executed properly, AI can also become biased.
This is because an AI algorithm is only ever as bias-free as the data we used to build it.
It can be difficult to make sure AI is increasing diversity, and at the same time maintaining its predictive power. The predictive power is basically how good a model is at predicting good performance – and weeding out those who wouldn’t do so well.
To ensure best chance of success it is crucial that the data we put into AI recruitment tools is bias free.
One way is to control what you put into your AI models. Big Data can for example be dangerous, as it looks at adding all possible data sources of information to predict performance.
This could mean that the AI model learns that ethnic background is a predictor for success, which we clearly want to avoid.
To combat this issue at Sapia, we make the following decisions:
Targeted variables:
(if we did the model could learn to discriminate against these groups if the variable was considered predictive)
Test our predictors:
When considering a new assessment tool, you should always ask your test provider the following;
How do you ensure the assessment isn’t biased against any gender, age or racial category, whilst remaining highly predictive of performance?
If they can’t give you a satisfying answer, it is definitely worthwhile considering another vendor.
Liked what you read? For further reading on how we minimise bias in our algorithms, head here.
A new study has just confirmed what many in HR have long suspected: traditional psychometric tests are no longer the gold standard for hiring.
Published in Frontiers in Psychology, the research compared AI-powered, chat-based interviews to traditional assessments, finding that structured, conversational AI interviews significantly reduce social desirability bias, deliver a better candidate experience, and offer a fairer path to talent discovery.
We’ve always believed hiring should be about understanding people and their potential, rather than reducing them to static scores. This latest research validates that approach, signalling to employers what modern, fair and inclusive hiring should look like.
While used for many decades in the absence of a more candidate-first approach, psychometric testing has some fatal flaws.
For starters, these tests rely heavily on self-reporting. Candidates are expected to assess their own traits. Could you truly and honestly rate how conscientious you are, how well you manage stress, or how likely you are to follow rules? Human beings are nuanced, and in high-stakes situations like job applications, most people are answering to impress, which can lead to less-than-honest self-evaluations.
This is known as social desirability bias: a tendency to respond in ways that are perceived as more favourable or acceptable, even if they don’t reflect reality. In other words, traditional assessments often capture a version of the candidate that’s curated for the test, not the person who will show up to work.
Worse still, these assessments can feel cold, transactional, even intimidating. They do little to surface communication skills, adaptability, or real-world problem solving, the things that make someone great at a job. And for many candidates, especially those from underrepresented backgrounds, the format itself can feel exclusionary.
Enter conversational AI.
Organisations have been using chat-based interviews to assess talent since before 2018, and they offer a distinctly different approach.
Rather than asking candidates to rate themselves on abstract traits, they invite them into a structured, open-ended conversation. This creates space for candidates to share stories, explain their thinking, and demonstrate how they communicate and solve problems.
The format reduces stress and pressure because it feels more like messaging than testing. Candidates can be more authentic, and their responses have been proven to reveal personality traits, values, and competencies in a context that mirrors honest workplace communication.
Importantly, every candidate receives the same questions, evaluated against the same objective, explainable framework. These interviews are structured by design, evaluated by AI models like Sapia.ai’s InterviewBERT, and built on deep language analysis. That means better data, richer insights, and a process that works at scale without compromising fairness.
The new study, published in Frontiers in Psychology, put AI-powered, chat-based interviews head-to-head with traditional psychometric assessments, and the results were striking.
One of the most significant takeaways was that candidates are less likely to “fake good” in chat interviews. The study found that AI-led conversations reduce social desirability bias, giving a more honest, unfiltered view of how people think and express themselves. That’s because, unlike multiple-choice questionnaires, chat-based assessments don’t offer obvious “right” answers – it’s on the candidate to express themselves authentically and not guess teh answer they think they would be rewarded for.
The research also confirmed what our candidate feedback has shown for years: people actually enjoy this kind of assessment. Participants rated the chat interviews as more engaging, less stressful, and more respectful of their individuality. In a hiring landscape where candidate experience is make-or-break, this matters.
And while traditional psychometric tests still show higher predictive validity in isolated lab conditions, the researchers were clear: real-world hiring decisions can’t be reduced to prediction alone. Fairness, transparency, and experience matter just as much, often more, when building trust and attracting top talent.
Sapia.ai was spotlighted in the study as a leader in this space, with our InterviewBERT model recognised for its ability to interpret candidate responses in a way that’s explainable, responsible, and grounded in science.
Today, hiring has to be about earning trust and empowering candidates to show up as their full selves, and having a voice in the process.
Traditional assessments often strip candidates of agency. They’re asked to conform, perform, and second-guess what the “right” answer might be. Chat-based interviews flip that dynamic. By inviting candidates into an open conversation, they offer something rare in hiring: autonomy. Candidates can tell their story, explain their thinking, and share how they approach real-world challenges, all in their own words.
This signals respect from the employer. It says: We trust you to show us who you are.
Hiring should be a two-way street – a long-held belief we’ve had, now backed by peer-reviewed science. The new research confirms that AI-led interviews can reduce bias, enhance fairness, and give candidates control over how they’re seen and evaluated.
It’s time for a new way to map progress in AI adoption, and pilots are not it.
Over the past year, I’ve been lucky enough to see inside dozens of enterprise AI programs. As a CEO, founder, and recently, judge in the inaugural Australian Financial Review AI Awards.
And here’s what struck me:
Despite the hype, we still don’t have a shared language for AI maturity in business.
Some companies are racing ahead. Others are still building slide decks. But the real issue is that even the orgs that are “doing AI” often don’t know what good looks like.
The most successful AI adoption strategy does not have you buying the hottest Gen AI tool or spinning up a chatbot to solve one use case. What it should do is build organisational capability in AI ethics, AI governance, data, design, and most of all, leadership.
It’s time we introduced a real AI Maturity Model. Not a checklist. A considered progression model. Something that recognises where your organisation is today and what needs to evolve next, safely, responsibly, and strategically.
Here’s an early sketch based on what I’ve seen:
AI is a capability.And like any capability, it needs time, structure, investment, and a map.
If you’re an HR leader, CIO, or enterprise buyer, and you’re trying to separate the real from the theatre, maturity thinking is your edge.
Let’s stop asking, “Who’s using AI?”
And start asking: “How mature is our AI practice and what’s the next step?”
I’m working on a more complete model now, based on what I’ve seen in Australia, the UK, and across our customer base. If you’re thinking about this too, I’d love to hear from you.
For too long, AI in hiring has been a black box. It promises speed, fairness, and efficiency, but rarely shows its work.
That era is ending.
“AI hiring should never feel like a mystery. Transparency builds trust, and trust drives adoption.”
At Sapia.ai, we’ve always worked to provide transparency to our customers. Whether with explainable scores, understandable AI models, or by sharing ROI data regularly, it’s a founding principle on which we build all of our products.
Now, with Discover Insights, transparency is embedded into our user experience. And it’s giving TA leaders the clarity to lead with confidence.
Transparency Is the New Talent Advantage
Candidates expect fairness. Executives demand ROI. Boards want compliance. Transparency delivers all three.
Even visionary Talent Leaders can find it difficult to move beyond managing processes to driving strategy without the right data. Discover Insights changes that.
“When talent leaders can see what’s working (and why) they can stop defending their strategy and start owning it.”
What it is: The median time between application and hire.
Why it matters: This is your speedometer. A sharp view of how long hiring takes and how that varies by cohort, role, or team helps you identify delays and prove efficiency gains to leadership.
Faster time to hire = faster access to revenue-driving talent.
What it is: Satisfaction scores, brand advocacy measures, and unfiltered candidate comments.
Why it matters: Many platforms track satisfaction. Sapia.ai’s Discover Insights takes it further, measuring whether that satisfaction translates into employer and consumer brand advocacy.
And with verbatim feedback collected at scale, talent leaders don’t have to guess how candidates feel. They can read it, learn from it, and take action.
You don’t just measure experience. You understand it in the candidates’ own words.
What it is: The percentage of candidates who exit the hiring process at different stages, and how to spot why.
Why it matters: Understanding drop-off points lets teams fix friction quickly. Embedding automation early in the funnel reduces recruiter workload and elevates top candidates, getting them talking to your hiring teams faster.
Assessment completion benchmarks in volume hiring range between 60–80%, but with a mobile-first, chat-based format like Sapia.ai’s, clients often exceed that.
Optimising your funnel isn’t about doing more. It’s about doing smarter, with less effort and better outcomes.
What it is: The percentage of completed applications that result in a hire.
Why it matters: This is your funnel efficiency score. A high yield means your sourcing, screening, and selection are aligned. A low one? There’s leakage, misfit, or missed opportunity.
Hiring yield signals funnel health, recruiter performance, and candidate-process fit.
What it is: Insights into how candidate scores are distributed, and whether responses appear copied or AI-generated.
Why it matters: In high-volume hiring, a normal distribution of scores suggests your assessment is calibrated fairly. If it’s skewed too far left or right, it could be too hard or too easy, and that affects trust.
Add in answer originality, and you can track engagement integrity, protecting both your process and your brand.
To effectively lead, you need more than simply tracking; you need insights enabling action.
When you can see how AI impacts every part of your hiring, from recruiter productivity to candidate sentiment to untapped talent, you lead with insight, not assumption. And that’s how TA earns a seat at the strategy table.