Part of our job here in the workforce science team is to keep up to date with new research in Organisational Psychology. This might sound boring to some people – but we love it!
As massive nerds, we find nothing more exciting than seeing new progress in our field. This time, our knowledge-cravings took us all the way from Melbourne to Orlando, Florida, to this year’s SIOP conference.
An important issue within our field – and within the US in general – is adverse impact and hiring for diversity.
We are passionate about ensuring people are not discriminated against in selection methods, whether it is because of gender, age, ethnic background or sexual orientation.
(Actually, this is also one of the key values and driving forces behind why Paul, our CEO, founded Sapia.)
One key topic at this year’s conference was the combination of data science and behavioural science. Specifically, there were a lot of discussions around how these sciences can work together to minimise bias and discrimination in the hiring process.
To give you some background as to why this is important, let’s explore what a standard selection process might look like today.
If you ever have applied for a job, it is likely you have gone through a process involving;
As mentioned, pretty standard. This is typically the different pieces of information that recruiters would use to assess your suitability for a role.
However, from an adverse impact perspective, this isn’t good enough.
The reason is that humans are biased (there are a plethora of studies out there proving this). And even if our biases (in most cases) are unconscious, we still base discriminatory decisions on them.
A research study by The Ladders found that recruiters only spend about 6 seconds looking at a resume. Using gaze-tracking technology they identified that recruiters spend almost 80% of this time on only a few items:
To most people that would seem reasonable. Our previous professional and educational experience should be predictive of future performance, right?
If you agree, it might surprise you that past job experience only has a 0.13 validity when used to predict performance (and your name certainly has nothing to do with how you would perform).
So not only is the information recruiters look at not actually predictive of performance, but it also has the potential to adversely impact minorities.
In the 1970s, the Toronto Symphony Orchestra was composed of almost all white males. A few years later, they caught on to their diversity issue and decided to do something about it.
One initiative was to introduce ‘blind auditions’. Individuals would perform from behind a screen, making the assessors ‘blind’ to who was performing. This meant that the performance was in the center of the assessment, not the individual.
The result?
The proportion of women within the orchestra increased from 5% to 35%.
Individuals within racial minority groups are also discriminated against based on resumes.
Research found that applicants with ‘traditional’ english names received an interview for every 1/10 resumes sent out. This is in contrast to applicants with African-American names, who only got an interview for every 1/15 resumes.
As the resume is one of the most common determinators of whether an applicant progresses to the next stage – it is alarming that this method can adversely impact minority groups.
Luckily, some progress is definitely being made to combat this.
Different techniques, for example blind recruitment, are increasing in popularity. Some progressive businesses have leap-frogged and started using artificial intelligence (AI) driven algorithms as a first step in their assessment process.
When using AI, it is very important to understand that the data put into the algorithm is of great importance. AI is often touted as the solution to the biases inherent in our thinking, but if not executed properly, AI can also become biased.
This is because an AI algorithm is only ever as bias-free as the data we used to build it.
It can be difficult to make sure AI is increasing diversity, and at the same time maintaining its predictive power. The predictive power is basically how good a model is at predicting good performance – and weeding out those who wouldn’t do so well.
To ensure best chance of success it is crucial that the data we put into AI recruitment tools is bias free.
One way is to control what you put into your AI models. Big Data can for example be dangerous, as it looks at adding all possible data sources of information to predict performance.
This could mean that the AI model learns that ethnic background is a predictor for success, which we clearly want to avoid.
To combat this issue at Sapia, we make the following decisions:
Targeted variables:
(if we did the model could learn to discriminate against these groups if the variable was considered predictive)
Test our predictors:
When considering a new assessment tool, you should always ask your test provider the following;
How do you ensure the assessment isn’t biased against any gender, age or racial category, whilst remaining highly predictive of performance?
If they can’t give you a satisfying answer, it is definitely worthwhile considering another vendor.
Liked what you read? For further reading on how we minimise bias in our algorithms, head here.
Retail leaders have embraced AI to improve supply chains, automate checkout, and enhance customer experience. But what about finding the people who deliver that customer experience?
AI brings incredible possibilities to supercharge how retailers hire, develop, and retain talent.
At Sapia.ai, we helped iconic retailers like Woolworths, Starbucks, Holland & Barrett, and David Jones reimagine hiring from the ground up – replacing resumes, ghosting, and gut feel with structured, ethical AI that delivers performance and fairness at scale.
The Retail Problem: Volume, Turnover, and Ghosting
Retail is high volume. It’s high churn. And it’s high stakes for candidate experience:
And yet, most hiring still relies on broken tools: resumes, forms, manual processes, and outdated systems.
Sapia.ai: The AI-Native Hiring Engine Built for Retail
Our platform automates the entire “apply to decide” journey, leveraging AI & automation to streamline the hiring process & bring intelligence into retail hiring.
Smart Interviewer™: Mobile-first, chat-based, structured interviews for a holistic candidate assessment.
Live Interview™: AI-driven bulk interview scheduling without calendar chaos.
InterviewAssist™: Instant interview guide generation.
Discover Insights: Embedded analytics to track hiring health in real-time.
Phai: GenAI coach for career and leadership potential.
Unlike resume parsing or generic chatbots, Sapia.ai assesses soft skills, communication, and culture fit using natural language processing and validated psychometrics. It’s ethical AI built in, not bolted on.
From Application to Interview in Under 24 Hours
Candidates don’t want to wait. They don’t want to be ghosted. And they don’t want resumes to define them.
> 80% of Sapia.ai chat interviews are completed in under 24 hours.
We see consistently high completion across categories: grocery, merchandising, home improvement, and luxury retail.
“It was fast, fair, and I actually got feedback. That never happens.” – Retail Candidate Feedback
Real Impact, Across Every Retail Category
Sapia.ai powers hiring for millions of candidates across diverse retail environments:
Impact of Sapia.ai on Retail Hiring in 2024 | |||
Category | Hours Saved | FTEs Saved | Cost Saved |
Grocery | 272k | 131 | $6.5m |
General Merchandise | 193k | 93 | $4.6m |
Specialty Retail | 133k | 64 | $3.2m |
Home Improvements | 103k | 50 | $2.5m |
Merchandising | 22k | 11 | $0.5m |
Luxury | 9k | 4 | $0.2m |
The savings created by intelligent, AI-native automation have unlocked team capacity, impacted retailers’ P&L, and improved store readiness.
Speed That Delivers Real ROI
Every candidate gets interviewed instantly. No waiting. No bias. Just fast, fair, data-backed decisions. This generates real impact for retailers who previously relied on slow, outdated processes to handle thousands of applicants.
DEI by Design, Not by Mandate
With Sapia.ai:
DEI Fairness Scores (based on actual hiring data):
Gender: 1.03 (vs customer baseline of 1.01)
Ethnicity: 1.15 (vs customer baseline of 0.74)
Why? Because ethical AI removes what humans can’t unlearn: bias. With a candidate experience that is inclusive by design, retailers can ensure fairness in screening, and measure it in hiring.
Candidate Experience = Brand Experience
Retail candidates are your customers. And the experience you give them matters. We have built a brand advocacy engine that delights candidates and gives you the data to prove it.
Responsible, Explainable AI Built for Retail
Not all AI is created equally. Since 2018, Sapia.ai has been built on a foundation of responsible AI:
“We can’t go back to life before Sapia.ai. We used to spend half the day reading resumes.”
— Talent Lead, Starbucks AU
What’s at Stake: Time, Brand, and Revenue
Every day spent using outdated hiring methods costs retailers:
With Sapia.ai, you get the productivity unlock retail hiring demands, and the intelligence your talent deserves.
Want to see how fast, fair, and human retail hiring can be?
We can’t hide from reality anymore. Talent needs are shifting overnight, and AI is redefining what it means to work. Traditional talent frameworks are no longer fit for purpose. At Sapia.ai, we believe the future of talent strategy lies in a smarter, fairer, and more adaptive way of defining what great looks like.
Our AI hiring platform is built on the largest proprietary dataset of interview answers globally – we’re a data company at heart, and we’ve seen the power of data-driven people methodology in transforming how organisations hire and retain good talent.
So, when it came to building a new Competency Framework that could be leveraged globally for hiring for any role at any scale, of course, we used a ground-up, data-led methodology that bridges the gap between organisational psychology and AI.
Conventional frameworks are typically crafted through expert interviews and focus groups. While valuable, they tend to be subjective, static, and too slow to keep pace with evolving job demands. As roles become more fluid and technology augments or replaces task-based skills, organisations need a new way to understand the human capabilities that genuinely matter for performance.
We wanted to identify enduring, job-agnostic competencies that reflect what drives success in a modern workplace – capabilities like adaptability, resilience, learning agility, and customer orientation.
(Why competencies and not just skills? Read why here.)
Sapia.ai’s methodology is rooted in the science of human behaviour but powered by cutting-edge AI. We asked two core questions:
The answer to both: yes.
We began with a rich dataset of over 37,000 job descriptions across industries and role types. Using large language models (LLMs) and advanced NLP techniques, we extracted over 200,000 behavioural descriptors. These were distilled down through a four-step process:
This resulted in a refined list of 25 human-centric competencies, each with clear behavioural indicators and practical relevance across a wide range of roles.
Our framework is intelligent, but importantly, it’s adaptive. Organisations can apply this methodology to their own job descriptions to discover custom competencies. This bottom-up, role-data-led approach ensures alignment to real work, not just theoretical models.
And because the framework integrates directly with our AI-powered hiring tools, you get a connected system that brings your talent strategy to life.
Our framework comes to life in the following tools:
Skills alone cannot predict success. Competencies do. As AI continues transforming how we work, Sapia.ai’s Competency Framework offers a scalable, scientific, and fair foundation for hiring and developing the talent of tomorrow.
If you’re a CHRO or Head of Recruitment at an enterprise today, chances are you’ve been inundated with messages about the importance of “skills-based hiring.” LinkedIn’s recent Work Change Report (2025) is full of compelling data: a 140% increase in the rate at which professionals are adding new skills to their profiles since 2022, and a projection that by 2030, 70% of the skills used in most jobs today will have changed.
This is essential reading. But there’s a missed opportunity: the singular focus on “skills” fails to acknowledge the real metric that talent leaders need to be using to future-proof their workforce — competencies.
But skills on their own — even soft ones — are generic, disjointed, and often disconnected from real-world performance. In contrast:
Put simply, competencies answer the all-important question: Can this person apply the right skills, in the right way, at the right time, to deliver results in our environment?
The Work Change Report outlines a future where job titles are fluid, roles evolve quickly, and AI is a constant disruptor. This creates three massive challenges for hiring at scale:
Skills alone don’t tell us whether someone can succeed in a role that will look different 12 months from now. But competencies can. Because they measure not just what a person knows, but how they apply it.
The LinkedIn report highlights a critical insight: organisations now prioritise agility in entry-level hiring. And there’s a good reason for that. With professionals expected to hold twice as many jobs over their careers compared to 15 years ago, adaptability is not just a nice-to-have. It’s core to success.
But you can’t measure agility with a keyword on a CV. You measure it by looking at competencies like:
When you shift the focus away from skills to behavioural competencies that can be defined, observed, and assessed in structured ways, you open yourself up to a much more dynamic and more useful way of managing talent.
To hire effectively at scale, particularly in a technology-driven world of work, talent leaders must shift their lens:
LinkedIn’s data shows that people are learning more skills more quickly than ever. But the real question for talent leaders like you is: Are those skills being applied in ways that drive value? Are we hiring for task proficiency or performance?
The truth is that the organisations that will thrive in an AI-driven, skills-fluid economy aren’t the ones chasing the next hot skill. They’re the ones designing systems to identify, develop and scale competence.
Sapia.ai has developed a comprehensive Competency Framework using a data-driven approach. Download the full paper here.