A few weeks ago, I confessed my imposter syndrome on social media. That I was, and still am, the least likely candidate to run an Ai tech company. I am a former CHRO, I am female, I am neither an engineer nor a data scientist. I also have no sales experience, and yet I find myself spending 80% of my time in sales (although we don’t call it that of course).
When I was Head of HR at BCG back in the noughties, the firm was going through a growth period. Due to the way teams were sold into engagements, having senior people who could execute on complex change programs in areas that were quite new to the firm (digital, etc), meant looking externally for ‘lateral’ hires.
These were people who could be trusted to uphold and amplify the firm’s strong values and bring much-needed expertise by virtue of their seniority and transferable skills. It was hard.
‘Organ rejection’ is a term I learned in my next gig, as CHRO at the then-largest digital company in Australia, the REA Group. Organ rejection is what happens when a lateral hire fails miserably – for both parties.
So, here I am 2.5 years into my current role. The one I feel professionally ill-qualified for when I realize I’m a lateral hire. But despite my self-doubt, there hasn’t been any ‘organ rejection’.
When I reflect on my life and the things that mean I might (there’s that imposter syndrome again) make a great CEO, I realize that so much of what I bring to this job is what I experienced outside of education. Born out of a need to be resilient from a young age, and a bit of serendipity.
In 1980, when I was 10, my family immigrated from Zimbabwe to Perth, Australia. We arrived, a family of six, with little else than each other. Anyone who’s done it knows the uncertainty of immigration. Most of us do it to risk a better life knowing very little beyond what is a glossy brochure-like version of the new land we are sailing to. It wasn’t as easy as we had been sold, but we survived and adapted to our new home country.
At 18, I moved to Melbourne from Perth to study my undergrad. Not because I wanted to make a bold move again, but because I wanted to get as far away as possible from my stepmother. My mother had tragically died at a very young age a few years after we immigrated and my dad remarried within 10 months.
I took law as my undergrad because a friend a year ahead of me was doing it and she seemed to like it. I then took a wild punt on doing an MBA and managed to get a full scholarship. Which meant I could take my time to figure out what exactly I would do with an MBA.
Fast forward three kids, and a divorce in the middle. I decided I needed to be in a creative environment. So I took an executive role in the arts knowing nothing about the two areas I was responsible for nor the sector.
I accepted an opportunity to be Deputy Chair on a board because someone believed in me. Not because I had a grand plan to build a portfolio career. I’ve never planned my life really, but I have often taken a punt. After all, I found my home by knocking on the front door because I just loved the look of it from the outside and thought ‘what the heck?”
I landed in this job because a close friend recommended me. I found the whole idea of figuring out how you find the best lateral talent so fascinating – without realizing until right now, I was a good example of just that.
I’d say that very little of my formal qualifications and work experience has really equipped me for the rough and tumble of being the CEO of a startup. The sheer unknown of building a new product in an emerging market, and the stress of checking the bank balance daily to make sure we can make this month’s payroll.
Most of what got me here came from the lessons I learned away from the workplace. From immigrating, losing a parent when I was young, leaving a city that I knew well on my own, learning to follow my whims, take chances, and constantly look for meaning.
None of that makes it onto my CV.
My mission is to make those things matter the most when it comes to finding the right people for the right job. I’m also making peace with my imposter syndrome by accepting that it’s the different perspective that I bring to the table that makes my contribution so unique.
I’d go so far as to say we should all hire “industry imposters” if we can. And I’m here to help you find them.
Barbara Hyman, 03/08/2020
Source: https://recruitingdaily.com/an-unlikely-recruit/
To keep up to date on all things “Hiring with Ai” subscribe to our blog!
You can try out Sapia’s Chat Interview right now, or leave us your details here to get a personalised demo.
Retail leaders have embraced AI to improve supply chains, automate checkout, and enhance customer experience. But what about finding the people who deliver that customer experience?
AI brings incredible possibilities to supercharge how retailers hire, develop, and retain talent.
At Sapia.ai, we helped iconic retailers like Woolworths, Starbucks, Holland & Barrett, and David Jones reimagine hiring from the ground up – replacing resumes, ghosting, and gut feel with structured, ethical AI that delivers performance and fairness at scale.
The Retail Problem: Volume, Turnover, and Ghosting
Retail is high volume. It’s high churn. And it’s high stakes for candidate experience:
And yet, most hiring still relies on broken tools: resumes, forms, manual processes, and outdated systems.
Sapia.ai: The AI-Native Hiring Engine Built for Retail
Our platform automates the entire “apply to decide” journey, leveraging AI & automation to streamline the hiring process & bring intelligence into retail hiring.
Smart Interviewer™: Mobile-first, chat-based, structured interviews for a holistic candidate assessment.
Live Interview™: AI-driven bulk interview scheduling without calendar chaos.
InterviewAssist™: Instant interview guide generation.
Discover Insights: Embedded analytics to track hiring health in real-time.
Phai: GenAI coach for career and leadership potential.
Unlike resume parsing or generic chatbots, Sapia.ai assesses soft skills, communication, and culture fit using natural language processing and validated psychometrics. It’s ethical AI built in, not bolted on.
From Application to Interview in Under 24 Hours
Candidates don’t want to wait. They don’t want to be ghosted. And they don’t want resumes to define them.
> 80% of Sapia.ai chat interviews are completed in under 24 hours.
We see consistently high completion across categories: grocery, merchandising, home improvement, and luxury retail.
“It was fast, fair, and I actually got feedback. That never happens.” – Retail Candidate Feedback
Real Impact, Across Every Retail Category
Sapia.ai powers hiring for millions of candidates across diverse retail environments:
Impact of Sapia.ai on Retail Hiring in 2024 | |||
Category | Hours Saved | FTEs Saved | Cost Saved |
Grocery | 272k | 131 | $6.5m |
General Merchandise | 193k | 93 | $4.6m |
Specialty Retail | 133k | 64 | $3.2m |
Home Improvements | 103k | 50 | $2.5m |
Merchandising | 22k | 11 | $0.5m |
Luxury | 9k | 4 | $0.2m |
The savings created by intelligent, AI-native automation have unlocked team capacity, impacted retailers’ P&L, and improved store readiness.
Speed That Delivers Real ROI
Every candidate gets interviewed instantly. No waiting. No bias. Just fast, fair, data-backed decisions. This generates real impact for retailers who previously relied on slow, outdated processes to handle thousands of applicants.
DEI by Design, Not by Mandate
With Sapia.ai:
DEI Fairness Scores (based on actual hiring data):
Gender: 1.03 (vs customer baseline of 1.01)
Ethnicity: 1.15 (vs customer baseline of 0.74)
Why? Because ethical AI removes what humans can’t unlearn: bias. With a candidate experience that is inclusive by design, retailers can ensure fairness in screening, and measure it in hiring.
Candidate Experience = Brand Experience
Retail candidates are your customers. And the experience you give them matters. We have built a brand advocacy engine that delights candidates and gives you the data to prove it.
Responsible, Explainable AI Built for Retail
Not all AI is created equally. Since 2018, Sapia.ai has been built on a foundation of responsible AI:
“We can’t go back to life before Sapia.ai. We used to spend half the day reading resumes.”
— Talent Lead, Starbucks AU
What’s at Stake: Time, Brand, and Revenue
Every day spent using outdated hiring methods costs retailers:
With Sapia.ai, you get the productivity unlock retail hiring demands, and the intelligence your talent deserves.
Want to see how fast, fair, and human retail hiring can be?
We can’t hide from reality anymore. Talent needs are shifting overnight, and AI is redefining what it means to work. Traditional talent frameworks are no longer fit for purpose. At Sapia.ai, we believe the future of talent strategy lies in a smarter, fairer, and more adaptive way of defining what great looks like.
Our AI hiring platform is built on the largest proprietary dataset of interview answers globally – we’re a data company at heart, and we’ve seen the power of data-driven people methodology in transforming how organisations hire and retain good talent.
So, when it came to building a new Competency Framework that could be leveraged globally for hiring for any role at any scale, of course, we used a ground-up, data-led methodology that bridges the gap between organisational psychology and AI.
Conventional frameworks are typically crafted through expert interviews and focus groups. While valuable, they tend to be subjective, static, and too slow to keep pace with evolving job demands. As roles become more fluid and technology augments or replaces task-based skills, organisations need a new way to understand the human capabilities that genuinely matter for performance.
We wanted to identify enduring, job-agnostic competencies that reflect what drives success in a modern workplace – capabilities like adaptability, resilience, learning agility, and customer orientation.
(Why competencies and not just skills? Read why here.)
Sapia.ai’s methodology is rooted in the science of human behaviour but powered by cutting-edge AI. We asked two core questions:
The answer to both: yes.
We began with a rich dataset of over 37,000 job descriptions across industries and role types. Using large language models (LLMs) and advanced NLP techniques, we extracted over 200,000 behavioural descriptors. These were distilled down through a four-step process:
This resulted in a refined list of 25 human-centric competencies, each with clear behavioural indicators and practical relevance across a wide range of roles.
Our framework is intelligent, but importantly, it’s adaptive. Organisations can apply this methodology to their own job descriptions to discover custom competencies. This bottom-up, role-data-led approach ensures alignment to real work, not just theoretical models.
And because the framework integrates directly with our AI-powered hiring tools, you get a connected system that brings your talent strategy to life.
Our framework comes to life in the following tools:
Skills alone cannot predict success. Competencies do. As AI continues transforming how we work, Sapia.ai’s Competency Framework offers a scalable, scientific, and fair foundation for hiring and developing the talent of tomorrow.
If you’re a CHRO or Head of Recruitment at an enterprise today, chances are you’ve been inundated with messages about the importance of “skills-based hiring.” LinkedIn’s recent Work Change Report (2025) is full of compelling data: a 140% increase in the rate at which professionals are adding new skills to their profiles since 2022, and a projection that by 2030, 70% of the skills used in most jobs today will have changed.
This is essential reading. But there’s a missed opportunity: the singular focus on “skills” fails to acknowledge the real metric that talent leaders need to be using to future-proof their workforce — competencies.
But skills on their own — even soft ones — are generic, disjointed, and often disconnected from real-world performance. In contrast:
Put simply, competencies answer the all-important question: Can this person apply the right skills, in the right way, at the right time, to deliver results in our environment?
The Work Change Report outlines a future where job titles are fluid, roles evolve quickly, and AI is a constant disruptor. This creates three massive challenges for hiring at scale:
Skills alone don’t tell us whether someone can succeed in a role that will look different 12 months from now. But competencies can. Because they measure not just what a person knows, but how they apply it.
The LinkedIn report highlights a critical insight: organisations now prioritise agility in entry-level hiring. And there’s a good reason for that. With professionals expected to hold twice as many jobs over their careers compared to 15 years ago, adaptability is not just a nice-to-have. It’s core to success.
But you can’t measure agility with a keyword on a CV. You measure it by looking at competencies like:
When you shift the focus away from skills to behavioural competencies that can be defined, observed, and assessed in structured ways, you open yourself up to a much more dynamic and more useful way of managing talent.
To hire effectively at scale, particularly in a technology-driven world of work, talent leaders must shift their lens:
LinkedIn’s data shows that people are learning more skills more quickly than ever. But the real question for talent leaders like you is: Are those skills being applied in ways that drive value? Are we hiring for task proficiency or performance?
The truth is that the organisations that will thrive in an AI-driven, skills-fluid economy aren’t the ones chasing the next hot skill. They’re the ones designing systems to identify, develop and scale competence.
Sapia.ai has developed a comprehensive Competency Framework using a data-driven approach. Download the full paper here.