Back

7 Tips to Making Better HR Tech and Data Investment Decisions

Navigating HR tech products as a CHRO

Having been a CHRO of a listed company in my last role, I can empathize with the confusion and exhaustion that comes from navigating the myriad of HR tech products, especially those involving AI in HR tech, flooding the market while trying to manage many ongoing HR change initiatives.

Last year, as CEO of an HR tech start-up, a key player among companies using AI in HR, I did what most do in that role — I spent a whole lot of time talking to customers, CHROs, heads of talent, recruiters, and business owners, listening to their challenges to build a product that effectively integrates AI use cases in HR. There are a few themes I picked up on through these conversations.

  • Improving procedural fairness — ensuring the most important processes (recruitment, promotion and REM ) is fair in both perception & application
  • Solutions which deliver integrity of both recruitment and promotion decisions (as more companies aim to promote from within)
  • A strong desire to leverage automation for low value, manual and/or repetitive HR tasks
  • Make everything simpler for the HR team and employees
  • More insights to make better, fairer decisions
  • The challenges of knowing what data matters and building the internal capability to make use of it

What is the ‘right’ tech stack?

‘What’s the right tech stack for my team and our company?’ and ‘how do I integrate all these technologies?’ are questions every CHRO of any sizeable company is grappling with. And the answer is more complicated than committing to a new HRIS.

Whilst I am not a tech expert, I spend many hours a week thinking about one critical part of the HR function that is ripe for technology innovation — recruitment. In that vein, I am sharing some things I have learnt which I hope will be useful to your investments in your tech stack in 2019.

1. Decision-making transparency to enhance organisational trust

There are HR tech products that give you insights on engagement hot spots, employee sentiment, and screen applicants for roles by scraping and analysing people’s personal profiles or communications. If you believe (as I do) that transparency enhances trust, especially when it comes to anything coming out of HR, these tech products could undermine organisational trust and maybe even your employer brand. Look beneath the hood of a tech product to validate how it works. AI and the concern of algorithmic bias is one every CHRO needs to be ready to talk about. Understand the source data and how it will be used in the solution. For candidate selection, any front end testing needs to not only be valid but feel valid to the user. That’s why we use relatable and valid questions to assess candidates in building our predictive models. No CVs, no video and no games.

Any extra discretionary effort by employees is going to be heavily influenced by how much trust your people have in you. Better to invest in tech solutions that allow for more transparency around how decisions are being made, that use reliable, objective and valid data.

2. Create and source forward-looking data for prediction

Think of the people analytics generated by HR today — turnover reports, engagements stats, culture diagnostics, exit survey analysis, 9 box talent management. All of it is backward-looking reporting on the past performance of talent. Much of it also subject to the vagaries of human analysis, therefore biased insights. How many of your organisations use data to validate the placement of people on the ‘potential axis’ of a 9 box? Or use NLP to extrapolate the key themes from engagement surveys and exit survey verbatim?

A bigger challenge for all of this backwards analytics is connecting the dots — how does a culture survey actually move you towards and predict a different culture? My colleague who spent his early years building up the data science team for a leading engagement survey platform and led the benchmarking analysis for their clients observed that year after year the same companies were in the top and the bottom quartile of engagement.

Changing culture is hard unless you change the people — the people you hire and the people you promote.

Predictions versus Psychometrics

The best investment you can make to change the culture and help the organisation move towards forward-looking predictive analytics is to start to capture data from the outset — from your applicant pool, through to the people you hire.

Having a data DNA profile of your applicant and hired pool means you can better target your employer branding, you can identify with high accuracy the profile of the stronger performers, the people who are high flight risk in the early months, the talent that moves fastest to productivity. Knowing these profiles means you can seamlessly feedback into your recruitment a better hiring profile.

This is the power of predictive analytics over psychometric testing which has no feedback loop back to the business on whether the person with the high OPQ test was any good in the role.

3. Data authenticity matters 

‘Garbage in garbage out. This is usually a reference to a data quality issue.

Data can take many forms- it’s not always hard numbers (more on that later), it can be data that is structured and regulated by you vs data that is unstructured and not regulated by you, such as CV’s. The former is always better — closer to the objective source of truth, usually owned by you, and less prone to gaming.

CVs are a source of bias

CVs are a poor man’s data substitute and rarely indicative of anything. A CV is a highly gameable type of data and relying on CV data to select talent exacerbates the risk of bias, as was experienced by Amazon when they built their hiring models around a 10-year database of CVs (mostly male).

I won’t spend time on the risks of bias in CV screening as enough has been written about that, other than to share this from a blog post which quotes academic research that ‘both men and women think men are more competent and hirable than women, even when they have identical qualifications ‘, and that ‘resumes with white-sounding names received 50% more calls for interviews than identical resumes with ethnic-sounding names’. https://www.lever.co/blog/where-unconscious-bias-creeps-into-the-recruitment-process.

Removing bias in the screening process is no longer about social justice, now it’s about commercial outcomes — McKinsey has documented each year since 2014 that companies with top quartile diversity experience outsized profitability growth https://www.mckinsey.com/business-functions/organization/our-insights/delivering-through-diversity

4. Think broadly about ‘what is data’

There are a plethora of surveys that make the point that HR functions are starting to invest in the power of people analytics.

Making data more visual has been a big driver behind the success of engagement analytics companies such as a Culture Amp, Glint and Peakon, transforming ugly engagement decks and the traditional circumplexes into insights-driven real-time dashboards. Visualisation offered by tools like Tableau is table stakes these days for HR.

Data doesn’t always look like data in a traditional sense. Take textual search data, human behavioural tracking data for example. Google has been making money off that data strategy for years and there are now books written about how google search terms are the most accurate mirror to our true beliefs and values (Read Everybody Lies for a fascinating insight into the power of text).

Tracking human behaviour has been mainstream in marketing teams for years, but has been slower to be leveraged in HR. In consumer marketing, no one cares why a person is more likely to buy an item, they are only interested in optimising for the outcome. There has been some interesting research applying consumer behaviour analysis to HR with fascinating insights, for example, that your choice of browser in completing an online assessment is a strong predictor of your performance in the role.

5. Provide data-driven actionable insights for the business

In consulting there is an often-used accusation of consultants ‘boiling the ocean’, which usually refers to those 100-page decks with chart after chart, visualising every data point possible as if the sheer weight of the deck is somehow testament to its accuracy.

Most junior consultants aspire to write the ‘killer slide’, the elusive one slide that crystallises the strategy in one data visual that will transform the company’s trajectory.

As HR teams start to produce more output on people analytics, there is a risk of ‘boiling the ocean’ on people analytics — quarterly engagement surveys, monthly churn data, diversity reporting. Figuring out the ‘so what’ of the data and using those insights to move the needle on business metrics that matter is harder, but also necessary. For HR integrating non-HR owned data is also important to get a fuller picture, especially for sales led businesses. For example, if sales drop off at the 2-year mark, what can HR do about that? What HR processes change as a result of seeing high correlations between sales trajectory in the first 6 weeks and tenure greater than 6 months.

In building predictive models for our clients, this is a sample of some of the actionable insights that were revealed through analysing both HR and sales performance data:

  • We found that female sales recruiters had a faster performance trajectory, but with a noticeable slow down at 2 years — this led the client to change their targets at recruitment to hire more women and embed new development programs for women at the critical 2-year mark
  • We observed a strong statistical correlation between outbound inside sales performance in the first 6 weeks and retention beyond 6 months, which led to changes in their onboarding but also more stringent probation processes earlier on to avoid holding onto people for too long
  • We identified better team leaders based on the relative performance of new starters by team leaders, where performance is defined as speed to sales productivity and retention at the 1-year mark
  • We reduced the complexity and time invested in KPI tracking for both recruiters and the operations team through knowing which KPIs truly mattered as lead indicators of performance

6. Think creatively about what business data can help in HR

HR’s role is very much one of building bridges across the organisation — taking a helicopter view of talent, ensuring that the needs of the business will be met in 3 years, 5 years by the people in the business, in enabling communication and collaboration channels across teams and geographies.

Building a single source of truth about their employee base often justifies HR’s biggest tech investment in helping achieve those objectives — the so called ‘one size fits all’ HR system. Yet it’s a big step to assume that even with the HRIS in place that HR has all the data it needs to do its job. Every function is making similar investments — sales & marketing into CRMs, operations teams into rostering systems, LTI and OHS data that might sit in the BU or a separate OHS team.

Last century, HRs accountability might have ended when they filled a role. Today, HR is accountable for ‘talent optimisation’ and that means ensuring people’s success through their career with the organisation, and often even beyond. Knowing how that talent is performing on the job– roster adherence, injury patterns, call centre metrics, sales performance — are integral to optimising that talent pool.

Capitalise on these various streams of data!

I encourage HR leaders to be expansive about what is performance data, especially objective performance data, and being relentless in sourcing that data from their non-HR colleagues internally.

7. HR as a data generator for the business

Data generated within HR can help drive broader organisation decisions. B2C companies with large volumes of sales and marketing applicants can leverage the power of those volumes for the benefit of the rest of the business.

Big brand companies can receive half a million-plus applications in one year, often engaging meaningfully with just a fraction. Technology allows you to test and engage meaningfully with every one of those applicants. Instead of thinking of that pool only as a candidate pool relevant to recruitment, for a B2C business, that pool is most likely also your consumer base and a rich source of data for your business.

Customer acquisition cost (CAC) for product and services like travel, retail, software, financial products range from $7 to $400, with companies committing substantial advertising budgets to reach that kind of audience, yet over in recruitment, they are engaging with them for free, at a point where the candidate/consumer is at their most willing and motivated to engage with you.

Imagine what consumer data you could capture from that applicant pool for the benefit of the business?

Transparency and authenticity, forward-looking predictive data, business impact first, think creatively and broadly, and HR as a data generator. These are 7 themes that can transform your organisation in by leveraging the data hidden within HR through the efficient use of technology.


You can try out Sapia’s Chat Interview right now, or leave us your details to book a personalised demo



Blog

New Research Proves the Value of AI Hiring

A new study has just confirmed what many in HR have long suspected: traditional psychometric tests are no longer the gold standard for hiring.

Published in Frontiers in Psychology, the research compared AI-powered, chat-based interviews to traditional assessments, finding that structured, conversational AI interviews significantly reduce social desirability bias, deliver a better candidate experience, and offer a fairer path to talent discovery.

We’ve always believed hiring should be about understanding people and their potential, rather than reducing them to static scores. This latest research validates that approach, signalling to employers what modern, fair and inclusive hiring should look like.

The problem with traditional psychometric tests

While used for many decades in the absence of a more candidate-first approach, psychometric testing has some fatal flaws.

For starters, these tests rely heavily on self-reporting. Candidates are expected to assess their own traits. Could you truly and honestly rate how conscientious you are, how well you manage stress, or how likely you are to follow rules? Human beings are nuanced, and in high-stakes situations like job applications, most people are answering to impress, which can lead to less-than-honest self-evaluations.

This is known as social desirability bias: a tendency to respond in ways that are perceived as more favourable or acceptable, even if they don’t reflect reality. In other words, traditional assessments often capture a version of the candidate that’s curated for the test, not the person who will show up to work.

Worse still, these assessments can feel cold, transactional, even intimidating. They do little to surface communication skills, adaptability, or real-world problem solving, the things that make someone great at a job. And for many candidates, especially those from underrepresented backgrounds, the format itself can feel exclusionary.

The Rise of Chat-Based Interviews

Enter conversational AI.

Organisations have been using chat-based interviews to assess talent since before 2018, and they offer a distinctly different approach. 

Rather than asking candidates to rate themselves on abstract traits, they invite them into a structured, open-ended conversation. This creates space for candidates to share stories, explain their thinking, and demonstrate how they communicate and solve problems.

The format reduces stress and pressure because it feels more like messaging than testing. Candidates can be more authentic, and their responses have been proven to reveal personality traits, values, and competencies in a context that mirrors honest workplace communication.

Importantly, every candidate receives the same questions, evaluated against the same objective, explainable frameworkThese interviews are structured by design, evaluated by AI models like Sapia.ai’s InterviewBERT, and built on deep language analysis. That means better data, richer insights, and a process that works at scale without compromising fairness.

Key Findings from the Latest Research

The new study, published in Frontiers in Psychology, put AI-powered, chat-based interviews head-to-head with traditional psychometric assessments, and the results were striking.

One of the most significant takeaways was that candidates are less likely to “fake good” in chat interviews. The study found that AI-led conversations reduce social desirability bias, giving a more honest, unfiltered view of how people think and express themselves. That’s because, unlike multiple-choice questionnaires, chat-based assessments don’t offer obvious “right” answers – it’s on the candidate to express themselves authentically and not guess teh answer they think they would be rewarded for.

The research also confirmed what our candidate feedback has shown for years: people actually enjoy this kind of assessment. Participants rated the chat interviews as more engaging, less stressful, and more respectful of their individuality. In a hiring landscape where candidate experience is make-or-break, this matters.

And while traditional psychometric tests still show higher predictive validity in isolated lab conditions, the researchers were clear: real-world hiring decisions can’t be reduced to prediction alone. Fairness, transparency, and experience matter just as much, often more, when building trust and attracting top talent.

Sapia.ai was spotlighted in the study as a leader in this space, with our InterviewBERT model recognised for its ability to interpret candidate responses in a way that’s explainable, responsible, and grounded in science.

Why Trust and Candidate Agency Win

Today, hiring has to be about earning trust and empowering candidates to show up as their full selves, and having a voice in the process.

Traditional assessments often strip candidates of agency. They’re asked to conform, perform, and second-guess what the “right” answer might be. Chat-based interviews flip that dynamic. By inviting candidates into an open conversation, they offer something rare in hiring: autonomy. Candidates can tell their story, explain their thinking, and share how they approach real-world challenges, all in their own words.

This signals respect from the employer. It says: We trust you to show us who you are.

Hiring should be a two-way street – a long-held belief we’ve had, now backed by peer-reviewed science. The new research confirms that AI-led interviews can reduce bias, enhance fairness, and give candidates control over how they’re seen and evaluated.

Read Online
Blog

AI Maturity in the Enterprise

Barb Hyman, CEO & Founder, Sapia.ai

 

It’s time for a new way to map progress in AI adoption, and pilots are not it. 

Over the past year, I’ve been lucky enough to see inside dozens of enterprise AI programs. As a CEO, founder, and recently, judge in the inaugural Australian Financial Review AI Awards.

And here’s what struck me:

Despite the hype, we still don’t have a shared language for AI maturity in business.

Some companies are racing ahead. Others are still building slide decks. But the real issue is that even the orgs that are “doing AI” often don’t know what good looks like.

You don’t need more pilots. You need a maturity model.

The most successful AI adoption strategy does not have you buying the hottest Gen AI tool or spinning up a chatbot to solve one use case. What it should do is build organisational capability in AI ethics, AI governance, data, design, and most of all, leadership.

It’s time we introduced a real AI Maturity Model. Not a checklist. A considered progression model. Something that recognises where your organisation is today and what needs to evolve next, safely, responsibly, and strategically.

Here’s an early sketch based on what I’ve seen:

The 5 Stages of AI Maturity (for real enterprises)
  1. Curious
    • Awareness is growing across leadership
    • Experimentation led by innovation teams
    • Risk is unclear, appetite is cautious
    • AI is seen as “tech”
  2. Reactive
    • Gen AI introduced via vendors or tools (e.g., copilots, agents)
    • Some pilots show promise, but with limited scale or guardrails
    • Data privacy and sovereignty questions begin to surface
    • Risk is siloed in legal/IT
  3. Capable
    • Clear policies on privacy, bias, and governance
    • Dedicated AI leads or councils exist
    • Internal use cases scale (e.g., summarisation, scoring, chat)
    • LLMs integrated with guardrails, safety reviewed
  4. Strategic
    • AI embedded in workflows, not layered on
    • LLM/data infrastructure is regionally compliant
    • AI outcomes measured (accuracy, equity, productivity)
    • Teams restructured around AI capability — not just tech enablement
  5. AI-Native
    • AI informs and transforms core decisions (hiring, pricing, customer service)
    • Enterprise builds proprietary intelligence
    • FAIR™/RAI principles deeply operationalised
    • Talent, systems, and leadership are aligned around an intelligent operating model
Why this matters for enterprise leaders

AI is a capability.And like any capability, it needs time, structure, investment, and a map.

If you’re an HR leader, CIO, or enterprise buyer, and you’re trying to separate the real from the theatre, maturity thinking is your edge.

Let’s stop asking, “Who’s using AI?”
And start asking: “How mature is our AI practice and what’s the next step?”

I’m working on a more complete model now, based on what I’ve seen in Australia, the UK, and across our customer base. If you’re thinking about this too, I’d love to hear from you.

Read Online
Blog

Beyond the Black Box: Why Transparency in AI Hiring Matters More Than Ever

For too long, AI in hiring has been a black box. It promises speed, fairness, and efficiency, but rarely shows its work.

That era is ending.

“AI hiring should never feel like a mystery. Transparency builds trust, and trust drives adoption.”

At Sapia.ai, we’ve always worked to provide transparency to our customers. Whether with explainable scores, understandable AI models, or by sharing ROI data regularly, it’s a founding principle on which we build all of our products.

Now, with Discover Insights, transparency is embedded into our user experience. And it’s giving TA leaders the clarity to lead with confidence.

Transparency Is the New Talent Advantage

Candidates expect fairness. Executives demand ROI. Boards want compliance. Transparency delivers all three.

Even visionary Talent Leaders can find it difficult to move beyond managing processes to driving strategy without the right data. Discover Insights changes that.

“When talent leaders can see what’s working (and why) they can stop defending their strategy and start owning it.”

Article content

Metrics That Make Transparency Real (and Actionable)

 

🕒 Time to Hire

 

Article content

What it is: The median time between application and hire.

Why it matters: This is your speedometer. A sharp view of how long hiring takes and how that varies by cohort, role, or team helps you identify delays and prove efficiency gains to leadership.

Faster time to hire = faster access to revenue-driving talent.

 

💬 Candidate Sentiment, Advocacy & Verbatim Feedback

 

Article content

What it is: Satisfaction scores, brand advocacy measures, and unfiltered candidate comments.

Why it matters: Many platforms track satisfaction. Sapia.ai’s Discover Insights takes it further, measuring whether that satisfaction translates into employer and consumer brand advocacy.

And with verbatim feedback collected at scale, talent leaders don’t have to guess how candidates feel. They can read it, learn from it, and take action.

You don’t just measure experience. You understand it in the candidates’ own words.

 

🔍 Drop-Off Rates, Funnel Visibility & Automation That Works

 

Article content

What it is: The percentage of candidates who exit the hiring process at different stages, and how to spot why.

Why it matters: Understanding drop-off points lets teams fix friction quickly. Embedding automation early in the funnel reduces recruiter workload and elevates top candidates, getting them talking to your hiring teams faster.

Assessment completion benchmarks in volume hiring range between 60–80%, but with a mobile-first, chat-based format like Sapia.ai’s, clients often exceed that.

Optimising your funnel isn’t about doing more. It’s about doing smarter, with less effort and better outcomes.

 

📈 Hiring Yield (Hired / Applied)

 

Article content

What it is: The percentage of completed applications that result in a hire.

Why it matters: This is your funnel efficiency score. A high yield means your sourcing, screening, and selection are aligned. A low one? There’s leakage, misfit, or missed opportunity.

Hiring yield signals funnel health, recruiter performance, and candidate-process fit.

 

🧠 AI Effectiveness: Score Distribution & Answer Originality

 

Article content

What it is: Insights into how candidate scores are distributed, and whether responses appear copied or AI-generated.

Why it matters: In high-volume hiring, a normal distribution of scores suggests your assessment is calibrated fairly. If it’s skewed too far left or right, it could be too hard or too easy, and that affects trust.

Add in answer originality, and you can track engagement integrity, protecting both your process and your brand.

From Metrics to Momentum

To effectively lead, you need more than simply tracking; you need insights enabling action.

When you can see how AI impacts every part of your hiring, from recruiter productivity to candidate sentiment to untapped talent, you lead with insight, not assumption. And that’s how TA earns a seat at the strategy table.

Learn more about Discover Insights here

Read Online