Having been a CHRO of a listed company in my last role, I can empathize with the confusion and exhaustion that comes from navigating the myriad of HR tech products, especially those involving AI in HR tech, flooding the market while trying to manage many ongoing HR change initiatives.
Last year, as CEO of an HR tech start-up, a key player among companies using AI in HR, I did what most do in that role — I spent a whole lot of time talking to customers, CHROs, heads of talent, recruiters, and business owners, listening to their challenges to build a product that effectively integrates AI use cases in HR. There are a few themes I picked up on through these conversations.
‘What’s the right tech stack for my team and our company?’ and ‘how do I integrate all these technologies?’ are questions every CHRO of any sizeable company is grappling with. And the answer is more complicated than committing to a new HRIS.
Whilst I am not a tech expert, I spend many hours a week thinking about one critical part of the HR function that is ripe for technology innovation — recruitment. In that vein, I am sharing some things I have learnt which I hope will be useful to your investments in your tech stack in 2019.
There are HR tech products that give you insights on engagement hot spots, employee sentiment, and screen applicants for roles by scraping and analysing people’s personal profiles or communications. If you believe (as I do) that transparency enhances trust, especially when it comes to anything coming out of HR, these tech products could undermine organisational trust and maybe even your employer brand. Look beneath the hood of a tech product to validate how it works. AI and the concern of algorithmic bias is one every CHRO needs to be ready to talk about. Understand the source data and how it will be used in the solution. For candidate selection, any front end testing needs to not only be valid but feel valid to the user. That’s why we use relatable and valid questions to assess candidates in building our predictive models. No CVs, no video and no games.
Any extra discretionary effort by employees is going to be heavily influenced by how much trust your people have in you. Better to invest in tech solutions that allow for more transparency around how decisions are being made, that use reliable, objective and valid data.
Think of the people analytics generated by HR today — turnover reports, engagements stats, culture diagnostics, exit survey analysis, 9 box talent management. All of it is backward-looking reporting on the past performance of talent. Much of it also subject to the vagaries of human analysis, therefore biased insights. How many of your organisations use data to validate the placement of people on the ‘potential axis’ of a 9 box? Or use NLP to extrapolate the key themes from engagement surveys and exit survey verbatim?
A bigger challenge for all of this backwards analytics is connecting the dots — how does a culture survey actually move you towards and predict a different culture? My colleague who spent his early years building up the data science team for a leading engagement survey platform and led the benchmarking analysis for their clients observed that year after year the same companies were in the top and the bottom quartile of engagement.
Changing culture is hard unless you change the people — the people you hire and the people you promote.
The best investment you can make to change the culture and help the organisation move towards forward-looking predictive analytics is to start to capture data from the outset — from your applicant pool, through to the people you hire.
Having a data DNA profile of your applicant and hired pool means you can better target your employer branding, you can identify with high accuracy the profile of the stronger performers, the people who are high flight risk in the early months, the talent that moves fastest to productivity. Knowing these profiles means you can seamlessly feedback into your recruitment a better hiring profile.
This is the power of predictive analytics over psychometric testing which has no feedback loop back to the business on whether the person with the high OPQ test was any good in the role.
‘Garbage in garbage out. This is usually a reference to a data quality issue.
Data can take many forms- it’s not always hard numbers (more on that later), it can be data that is structured and regulated by you vs data that is unstructured and not regulated by you, such as CV’s. The former is always better — closer to the objective source of truth, usually owned by you, and less prone to gaming.
CVs are a poor man’s data substitute and rarely indicative of anything. A CV is a highly gameable type of data and relying on CV data to select talent exacerbates the risk of bias, as was experienced by Amazon when they built their hiring models around a 10-year database of CVs (mostly male).
I won’t spend time on the risks of bias in CV screening as enough has been written about that, other than to share this from a blog post which quotes academic research that ‘both men and women think men are more competent and hirable than women, even when they have identical qualifications ‘, and that ‘resumes with white-sounding names received 50% more calls for interviews than identical resumes with ethnic-sounding names’. https://www.lever.co/blog/where-unconscious-bias-creeps-into-the-recruitment-process.
Removing bias in the screening process is no longer about social justice, now it’s about commercial outcomes — McKinsey has documented each year since 2014 that companies with top quartile diversity experience outsized profitability growth https://www.mckinsey.com/business-functions/organization/our-insights/delivering-through-diversity
There are a plethora of surveys that make the point that HR functions are starting to invest in the power of people analytics.
Making data more visual has been a big driver behind the success of engagement analytics companies such as a Culture Amp, Glint and Peakon, transforming ugly engagement decks and the traditional circumplexes into insights-driven real-time dashboards. Visualisation offered by tools like Tableau is table stakes these days for HR.
Data doesn’t always look like data in a traditional sense. Take textual search data, human behavioural tracking data for example. Google has been making money off that data strategy for years and there are now books written about how google search terms are the most accurate mirror to our true beliefs and values (Read Everybody Lies for a fascinating insight into the power of text).
Tracking human behaviour has been mainstream in marketing teams for years, but has been slower to be leveraged in HR. In consumer marketing, no one cares why a person is more likely to buy an item, they are only interested in optimising for the outcome. There has been some interesting research applying consumer behaviour analysis to HR with fascinating insights, for example, that your choice of browser in completing an online assessment is a strong predictor of your performance in the role.
In consulting there is an often-used accusation of consultants ‘boiling the ocean’, which usually refers to those 100-page decks with chart after chart, visualising every data point possible as if the sheer weight of the deck is somehow testament to its accuracy.
Most junior consultants aspire to write the ‘killer slide’, the elusive one slide that crystallises the strategy in one data visual that will transform the company’s trajectory.
As HR teams start to produce more output on people analytics, there is a risk of ‘boiling the ocean’ on people analytics — quarterly engagement surveys, monthly churn data, diversity reporting. Figuring out the ‘so what’ of the data and using those insights to move the needle on business metrics that matter is harder, but also necessary. For HR integrating non-HR owned data is also important to get a fuller picture, especially for sales led businesses. For example, if sales drop off at the 2-year mark, what can HR do about that? What HR processes change as a result of seeing high correlations between sales trajectory in the first 6 weeks and tenure greater than 6 months.
HR’s role is very much one of building bridges across the organisation — taking a helicopter view of talent, ensuring that the needs of the business will be met in 3 years, 5 years by the people in the business, in enabling communication and collaboration channels across teams and geographies.
Building a single source of truth about their employee base often justifies HR’s biggest tech investment in helping achieve those objectives — the so called ‘one size fits all’ HR system. Yet it’s a big step to assume that even with the HRIS in place that HR has all the data it needs to do its job. Every function is making similar investments — sales & marketing into CRMs, operations teams into rostering systems, LTI and OHS data that might sit in the BU or a separate OHS team.
Last century, HRs accountability might have ended when they filled a role. Today, HR is accountable for ‘talent optimisation’ and that means ensuring people’s success through their career with the organisation, and often even beyond. Knowing how that talent is performing on the job– roster adherence, injury patterns, call centre metrics, sales performance — are integral to optimising that talent pool.
Capitalise on these various streams of data!
I encourage HR leaders to be expansive about what is performance data, especially objective performance data, and being relentless in sourcing that data from their non-HR colleagues internally.
Data generated within HR can help drive broader organisation decisions. B2C companies with large volumes of sales and marketing applicants can leverage the power of those volumes for the benefit of the rest of the business.
Big brand companies can receive half a million-plus applications in one year, often engaging meaningfully with just a fraction. Technology allows you to test and engage meaningfully with every one of those applicants. Instead of thinking of that pool only as a candidate pool relevant to recruitment, for a B2C business, that pool is most likely also your consumer base and a rich source of data for your business.
Customer acquisition cost (CAC) for product and services like travel, retail, software, financial products range from $7 to $400, with companies committing substantial advertising budgets to reach that kind of audience, yet over in recruitment, they are engaging with them for free, at a point where the candidate/consumer is at their most willing and motivated to engage with you.
Imagine what consumer data you could capture from that applicant pool for the benefit of the business?
Transparency and authenticity, forward-looking predictive data, business impact first, think creatively and broadly, and HR as a data generator. These are 7 themes that can transform your organisation in by leveraging the data hidden within HR through the efficient use of technology.
You can try out Sapia’s Chat Interview right now, or leave us your details to book a personalised demo
This is the state of hiring in 2025. Too often, candidates are ghosted, ignored, and reduced to a CV. Recruiters are forced to make decisions in data poverty, with scraps of information like grades, job titles, or where someone has worked before. Privilege gets rewarded; potential gets overlooked.
For the first time, we now have evidence that AI, when designed responsibly, brings humanity back to hiring.
Sapia.ai has released the Humanising Hiring report. The largest analysis ever conducted into candidate experience with AI interviews. The study draws on more than 1 million interviews and 11 million words of candidate feedback across 30+ countries.
Unlike surveys or anecdotal reviews, this research is grounded in what candidates themselves chose to share at one of the most stressful moments of their lives: applying for a job.
30% more women apply when told AI will assess them, resulting in a 36% closure of the gender gap
98% hiring equity for people with disabilities through a blind, untimed, mobile-first interview design
Here’s what candidates themselves revealed:
“None of the other companies I’ve applied to do this sort of thing. It’s so unique and wonderful to give this sort of insight to people… whether we get the job or not, we can take away something very valuable out of the process.”
“That felt so personal, as if the person genuinely took the time to read my answers and send me a summary of myself… that was pretty amazing.”
“This study stands out as one of the most comprehensive examinations of candidate experience to date. Analysing over a million interviews and 11 million words of candidate feedback, the findings make clear that responsibly designed AI has the potential to fundamentally improve hiring — not just by increasing speed, but by advancing fairness, enhancing the human aspect, and leading to stronger job matches.”
— Kathi Enderes, SVP Research & Global Industry Analyst, The Josh Bersin Company
The research challenges the idea that AI dehumanises the hiring process. In fact, it proves the opposite: when thoughtfully designed, AI can restore dignity to candidates by giving them a real interview from the very first interaction, giving them space to share their story, and giving them timely feedback.
With Sapia.ai’s Chat Interview:
Every candidate gets the same structured, role-relevant questions.
Interviews are untimed, so candidates can answer at their own pace.
Bias is monitored continuously under our FAIR™ framework.
Every candidate receives personalised feedback.
This isn’t automation for the sake of speed. It’s intelligence that puts people first, and it works. Leading global brands, including Qantas, Joe & the Juice, BT Group, Holland & Barrett, and Woolworths, have all transformed their hiring outcomes while enhancing the candidate experience.
Applicant volumes are exploding. Boards are demanding ROI on people decisions. And candidates expect fairness and agency. Sticking with the status quo — ghosting, inconsistent interviews, CV screening — comes at a real cost in brand equity, lost talent, and wasted time.
It’s time to move from data poverty to data richness, from broken processes to brilliant hiring.
This is the first time candidate feedback on AI interviews has been analysed at such scale. The insights are clear: hiring can be brilliant.
👉 Download the Humanising Hiring report now to see the full findings.
Barb Hyman, CEO & Founder, Sapia.ai
Every CHRO I speak to wants clarity on skills:
What skills do we have today?
What skills do we need tomorrow?
How do we close the gap?
The skills-based organisation has become HR’s holy grail. But not all skills data is created equal. The way you capture it has ethical consequences.
Some vendors mine employees’ “digital exhaust” by scanning emails, CRM activity, project tickets and Slack messages to guess what skills someone has.
It is broad and fast, but fairness is a real concern.
The alternative is to measure skills directly. Structured, science-backed conversations reveal behaviours, competencies and potential. This data is transparent, explainable and given with consent.
It takes longer to build, but it is grounded in reality.
Surveillance and trust: Do your people know their digital trails are being mined? What happens when they find out?
Bias: Who writes more Slack updates, introverts or extroverts? Who logs more Jira tickets, engineers or managers? Behaviour is not the same as skills.
Explainability: If an algorithm says, “You are good at negotiation” because you sent lots of emails, how can you validate that?
Agency: If a system builds a skills profile without consent, do employees have control over their own career data?
Skills define careers. They shape mobility, pay and opportunity. That makes how you measure them an ethical choice as well as a technical one.
At Sapia.ai, we have shown that structured, untimed, conversational AI interviews restore dignity in hiring and skills measurement. Over 8 million interviews across 50+ languages prove that candidates prefer transparent and fair processes that let them share who they are, in their own words.
Skills measurement is about trust, fairness and people’s futures.
When evaluating skills solutions, ask:
Is this system measuring real skills, or only inferring them from proxies?
Would I be comfortable if employees knew exactly how their skills profile was created?
Does this process give people agency over their data, or take it away?
The choice is between skills data that is guessed from digital traces and skills data that is earned through evidence, reflection and dialogue.
If you want trust in your people decisions, choose measurement over inference.
To see how candidates really feel about ethical skills measurement, check out our latest research report: Humanising Hiring, the largest scale analysis of candidate experience of AI interviews – ever.
What is the most ethical way to measure skills?
The most ethical method is to use structured, science-backed conversations that assess behaviours, competencies and potential with consent and transparency.
Why is skills inference problematic?
Skills inference relies on digital traces such as emails or Slack activity, which can introduce bias, raise privacy concerns and reduce employee trust.
How does ethical AI help with skills measurement?
Ethical AI, such as structured conversational interviews, ensures fairness by using consistent data, removing demographic bias and giving every candidate or employee a voice.
What should HR leaders look for in a skills platform?
Look for transparency, explainability, inclusivity and evidence that the platform measures skills directly rather than guessing from digital behaviour.
How does Sapia.ai support ethical skills measurement?
Sapia.ai uses structured, untimed chat interviews in over 50 languages. Every candidate receives
Walk into any store this festive season and you’ll see it instantly. The lights, the displays, the products are all crafted to draw people in. Retailers spend millions on campaigns to bring customers through the door.
But the real moment of truth isn’t the emotional TV ad, or the shimmering window display. It’s the human standing behind the counter. That person is the brand.
Most retailers know this, yet their hiring processes tell a different story. Candidates are often screened by rigid CV reviews or psychometric tests that force them into boxes. Neurodiverse candidates, career changers, and people from different cultural or educational backgrounds are often the ones who fall through the cracks.
And yet, these are the very people who may best understand your customers. If your store colleagues don’t reflect the diversity of the communities you serve, you create distance where there should be connection. You lose loyalty. You lose growth.
We call this gap the diversity mirror.
When retailers achieve mirrored diversity, their teams look like their customers:
Customers buy where they feel seen – making this a commercial imperative.
The challenge for HR leaders is that most hiring systems are biased by design. CVs privilege pedigree over potential. Multiple-choice tests reduce people to stereotypes. And rushed festive hiring campaigns only compound the problem.
That’s where Sapia.ai changes the equation: Every candidate is interviewed automatically, fairly, and in their own words.
With the right HR hiring tools, mirrored diversity becomes a data point you can track, prove, and deliver on. It’s no longer just a slogan.
David Jones, Australia’s premium department store, put this into practice:
The result? Store teams that belong with the brand and reflect the customers they serve.
Read the David Jones Case Study here 👇
As you prepare for festive hiring in the UK and Europe, ask yourself:
Because when your colleagues mirror your customers, you achieve growth, and by design, you’ll achieve inclusion.
See how Sapia.ai can help you achieve mirrored diversity this festive season. Book a demo with our team here.
Mirrored diversity means that store teams reflect the diversity of their customer base, helping create stronger connections and loyalty.
Seasonal employees often provide the first impression of a brand. Inclusive teams make customers feel seen, improving both experience and sales.
Adopting tools like AI structured interviews, bias monitoring, and data dashboards helps retailers hire fairly, reduce screening time, and build more diverse teams.